11 research outputs found
Ūkių vidaus žemėtvarkos projektų pertvarkymo intensyvios žemdirbystės sąlygomis darbų technologija : (techn. nurodymai)
Vytauto Didžiojo universitetasŽemės ūkio akademij
Cryogenic Si detectors for ultra radiation hardness in SLHC environment
Radiation hardness up to 1016 neq/cm2 is required in the future HEP experiments for most inner detectors. However, 1016 neq/cm2 fluence is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies: the carrier trapping will limit the charge collection depth to an effective range of 20–30 μm regardless of depletion depth. Significant improvement of the radiation hardness of silicon sensors has been taken place within RD39. Fortunately the cryogenic tool we have been using provides us a convenient way to solve the detector charge collection efficiency (CCE) problem at SLHC radiation level (1016 neq/cm2). There are two key approaches in our efforts: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (⩽230 K); and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the LN2 temperature.
In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures. In this approach, we intend to study the trapping effect at temperatures below LN2 temperature. A freeze-out of trapping can certainly help in the development of ultra-radiation hard Si detectors for SLHC. A detector CCE measurement system using ultra-fast picosecond laser with a He cryostat has been built at CERN. This system can be used to find out the practical cryogenic temperature range that can be used to freeze out the radiation-induced trapping levels, and it is ready for measurements on extremely heavily irradiated silicon detectors. Initial data from this system will be presented
Development of cryogenic Si detectors by CERN RD39 Collaboration for ultra radiation hardness in SLHC environment
There are two key approaches in our CERN RD 39 Collaboration efforts to obtain ultra-radiation-hard Si detectors: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (150 K), and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the liquid nitrogen (LN2) temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures
The effect of charge collection recovery in silicon p-n junction detectors irradiated by different particles
The recovery of the charge collection efficiency (CCE) at low temperatures, the so-called "Lazarus effect", was studied in Si detectors irradiated by fast reactor neutrons, by protons of medium and high energy, by pions and by gamma-rays. The experimental results show that the Lazarus effect is observed: (a) after all types of irradiation; (b) before and after space charge sign inversion; (c) only in detectors that are biased at voltages resulting in partial depletion at room temperature. The experimental temperature dependence of the CCE for proton- irradiated detectors shows non-monotonic behaviour with a maximum at a temperature defined as the CCE recovery temperature. The model of the effect for proton-irradiated detectors agrees well with that developed earlier for detectors irradiated by neutrons. The same midgap acceptor-type and donor-type levels are responsible for the Lazarus effect in detectors irradiated by neutrons and by protons. A new, abnormal "zigzag"-shaped temperature dependence of the CCE was observed for detectors irradiated by all particles (neutrons, protons and pions) and by an ultra-high dose of gamma-rays, when operating at low bias voltages. This effect is explained in the framework of the double-peak electric field distribution model for heavily irradiated detectors. The redistribution of the space charge region depth between the depleted regions adjacent to p(+) and n(+) contacts is responsible for the "zigzag"-shaped curves. It is shown that the CCE recovery temperature increases with reverse bias in all detectors, regardless of the type of radiation
Recent results from the CERN RD39 Collaboration on super-radiation hard cryogenic silicon detectors for LHC and LHC upgrade
The CERN RD39 Collaboration is developing super-radiation hard cryogenic Si detectors for applications in experiments of the LHC and the future LHC Upgrade. Radiation hardness up to the fluence of 1016 neq/cm2 is required in the future experiments. Significant improvement in the radiation hardness of silicon sensors has taken place during the past years. However, 1016 neq/cm2 is well beyond the radiation tolerance of even the most advanced semiconductor detectors made by commonly adopted technologies. Furthermore, at this radiation load the carrier trapping will limit the charge collection depth to the range of 20–30 μm regardless of the depletion depth. The key of our approach is freezing the trapping that affects Charge Collection Efficiency (CCE)
Low-temperature tracking detectors
RD39 collaboration develops new detector techniques for particle trackers, which have to withstand fluences up to
10^16 cm^2 of high-energy particles. The work focuses on the optimization of silicon detectors and their readout
electronics while keeping the temperature as a free parameter. Our results so far suggest that the best operating
temperature is around 130 K: We shall also describe in this paper how the current-injected mode of operation reduces
the polarization of the bulk silicon at low temperatures, and how the engineering and materials problems related with
vacuum and low temperature can be solved
In-hospital and 6-month outcomes in patients with COVID-19 supported with extracorporeal membrane oxygenation (EuroECMO-COVID): a multicentre, prospective observational study
Background: Extracorporeal membrane oxygenation (ECMO) has been widely used in patients with COVID-19, but uncertainty remains about the determinants of in-hospital mortality and data on post-discharge outcomes are scarce. The aims of this study were to investigate the variables associated with in-hospital outcomes in patients who received ECMO during the first wave of COVID-19 and to describe the status of patients 6 months after ECMO initiation. Methods: EuroECMO-COVID is a prospective, multicentre, observational study developed by the European Extracorporeal Life Support Organization. This study was based on data from patients aged 16 years or older who received ECMO support for refractory COVID-19 during the first wave of the pandemic—from March 1 to Sept 13, 2020—at 133 centres in 21 countries. In-hospital mortality and mortality 6 months after ECMO initiation were the primary outcomes. Mixed-Cox proportional hazards models were used to investigate associations between patient and management-related variables (eg, patient demographics, comorbidities, pre-ECMO status, and ECMO characteristics and complications) and in-hospital deaths. Survival status at 6 months was established through patient contact or institutional charts review. This study is registered with ClinicalTrials.gov, NCT04366921, and is ongoing. Findings: Between March 1 and Sept 13, 2020, 1215 patients (942 [78%] men and 267 [22%] women; median age 53 years [IQR 46–60]) were included in the study. Median ECMO duration was 15 days (IQR 8–27). 602 (50%) of 1215 patients died in hospital, and 852 (74%) patients had at least one complication. Multiorgan failure was the leading cause of death (192 [36%] of 528 patients who died with available data). In mixed-Cox analyses, age of 60 years or older, use of inotropes and vasopressors before ECMO initiation, chronic renal failure, and time from intubation to ECMO initiation of 4 days or more were associated with higher in-hospital mortality. 613 patients did not die in hospital, and 547 (95%) of 577 patients for whom data were available were alive at 6 months. 102 (24%) of 431 patients had returned to full-time work at 6 months, and 57 (13%) of 428 patients had returned to part-time work. At 6 months, respiratory rehabilitation was required in 88 (17%) of 522 patients with available data, and the most common residual symptoms included dyspnoea (185 [35%] of 523 patients) and cardiac (52 [10%] of 514 patients) or neurocognitive (66 [13%] of 512 patients) symptoms. Interpretation: Patient's age, timing of cannulation (<4 days vs ≥4 days from intubation), and use of inotropes and vasopressors are essential factors to consider when analysing the outcomes of patients receiving ECMO for COVID-19. Despite post-discharge survival being favourable, persisting long-term symptoms suggest that dedicated post-ECMO follow-up programmes are required. Funding: None