22 research outputs found

    Treatment of developmental dyslexia: A review

    Get PDF
    Remarkably few research articles on the treatment of developmental dyslexia were published during the last 25 years. Some treatment research arose from the temporal processing theory, some from the phonological deficit hypothesis and some more from the balance model of learning to read and dyslexia. Within the framework of that model, this article reviews the aetiology of dyslexia sub-types, the neuropsychological rationale for treatment, the treatment techniques and the outcomes of treatment research. The possible mechanisms underlying the effects of treatment are discussed. © 2005 Informa UK Ltd All rights reserved

    The impact of trench defects in InGaN/GaN light emitting diodes and implications for the "green gap" problem

    Get PDF
    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.This is the accepted manuscript version. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/apl/105/11/10.1063/1.4896279?showFTTab=true&containerItemId=content/aip/journal/apl

    Recreational and occupational field exposure to freshwater cyanobacteria – a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment

    Get PDF
    Cyanobacteria are common inhabitants of freshwater lakes and reservoirs throughout the world. Under favourable conditions, certain cyanobacteria can dominate the phytoplankton within a waterbody and form nuisance blooms. Case reports and anecdotal references dating from 1949 describe a range of illnesses associated with recreational exposure to cyanobacteria: hay fever-like symptoms, pruritic skin rashes and gastro-intestinal symptoms are most frequently reported. Some papers give convincing descriptions of allergic reactions while others describe more serious acute illnesses, with symptoms such as severe headache, pneumonia, fever, myalgia, vertigo and blistering in the mouth. A coroner in the United States found that a teenage boy died as a result of accidentally ingesting a neurotoxic cyanotoxin from a golf course pond. This death is the first recorded human fatality attributed to recreational exposure to cyanobacteria, although uncertainties surround the forensic identification of the suspected cyanotoxin in this case. We systematically reviewed the literature on recreational exposure to freshwater cyanobacteria. Epidemiological data are limited, with six studies conducted since 1990. Statistically significant increases in symptoms were reported in individuals exposed to cyanobacteria compared to unexposed counterparts in two Australian cohort studies, though minor morbidity appeared to be the main finding. The four other small studies (three from the UK, one Australian) did not report any significant association. However, the potential for serious injury or death remains, as freshwater cyanobacteria under bloom conditions are capable of producing potent toxins that cause specific and severe dysfunction to hepatic or central nervous systems. The exposure route for these toxins is oral, from ingestion of recreational water, and possibly by inhalation. A range of freshwater microbial agents may cause acute conditions that present with features that resemble illnesses attributed to contact with cyanobacteria and, conversely, acute illness resulting from exposure to cyanobacteria or cyanotoxins in recreational waters could be misdiagnosed. Accurately assessing exposure to cyanobacteria in recreational waters is difficult and unreliable at present, as specific biomarkers are unavailable. However, diagnosis of cyanobacteria-related illness should be considered for individuals presenting with acute illness following freshwater contact if a description is given of a waterbody visibly affected by planktonic mass development

    The use of exploratory procedures by blind and sighted adults and children

    Get PDF
    Contains fulltext : 121154.pdf (publisher's version ) (Open Access)The study examined exploratory procedures (EPs) of congenitally blind and sighted children and adults on a haptic match-to-sample task. The aim was to examine the influence of age, visual status, and familiarity on the use of EPs when people haptically examine the object properties of weight, size, exact shape, and texture. EPs in the first and last of four series of trials were compared. The results showed that all four groups chose the same dominant EP for examining the four different object properties, all of them in agreement with the ones found by Lederman and Klatzky (Cognitive Psychology 19:342–368, 1987). Children were found to use more EPs, rather than using only the most efficient EP, for the dimension under study. Overall, performance was affected more by age than by visual status, and repeating the task led to increased efficiency in all groups. To describe exploratory behaviors in more detail, actions were introduced. Actions are single or sequential hand movements occurring in parallel with the EPs or apart from the EPs. The use of actions explained, in part, individual variation among the participants.14 p

    Predictive mechanisms in the control of contour following

    No full text
    Item does not contain fulltextIn haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus, the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes, they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions.12 p

    beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters

    Get PDF
    [EN] Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-ß-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-ß-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-ß-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB.We thank Dr. Pedro Serra (IBMCP, Valencia, Spain) for his help with statistical analysis, and Prof. Dr. Luiz A.B. de Moraes (Chemistry Department, FFCLRP, USP, Riberao Preto, Brazil) and Prof. Dr. Edson Rodrigues Filho (LaBioMMi, Chemistry Department, UFSCar, Sao Carlos, Brazil) for the use of GC-MS equipment. Use of the Citrus Germplasm Bank (IVIA, Valencia, Spain) is gratefully acknowledged. This work was funded by the Fundo de Defesa da Citricultura (Fundecitrus) and FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, 2015/0711-3). In memoriam of Prof. J.M.Bove.AlquĂ©zar-GarcĂ­a, B.; Linhares Volpe, HX.; Magnani, RF.; De Miranda, MP.; Santos, MA.; Wulff, NA.; Simoes Bento, JM.... (2017). beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Scientific Reports. 7. https://doi.org/10.1038/s41598-017-06119-wS7Bove, J. M. H. A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7–37 (2006).Gottwald, T. R. Current Epidemiological Understanding of Citrus Huanglongbing. Annu. Rev. Phytopathol 48, 119–39 (2010).FAOSTAT. Food and Agriculture Organization of the United Nations. Available at: http://faostat3.fao.org/home/E (Accessed: 4th July 2016).Hodges, A. W., Rahmani, M., Stevens, T. J. & Spreen, T. H. Economic impacts of the florida citrus industry final sponsored project report to the Florida department of citrus. 1–39 (2014).Beattie, G. A. C. et al. Aspects and insights of Australia-Asia collaborative research on Huanglongbing. In Proceedings of an international workshop for prevention of citrus greening diseases in severely infested areas 47–67 (2006).Silva, J. A. A. et al. Repellency of selected Psidium guajava cultivars to the Asian citrus psyllid, Diaphorina citri. Crop Prot. 84, 14–20 (2016).Zaka, S. M., Zeng, X. N., Holford, P. & Beattie, G. A. C. Repellent effect of guava leaf volatiles on settlement of adults of citrus psylla, Diaphorina citri Kuwayama, on citrus. Insect Sci. 17, 39–45 (2010).Onagbola, E. O., Rouseff, R. L., Smoot, J. M. & Stelinski, L. L. Guava leaf volatiles and dimethyl disulphide inhibit response of Diaphorina citri Kuwayama to host plant volatiles. J. Appl. Entomol 135, 404–414 (2011).Khan, Z. R., Midega, C. A., Bruce, T. J., Hooper, A. M. & Pickett, J. A. Exploiting phytochemicals for developing a ‘push-pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 61, 4185–4196 (2010).Ichinose, K., Hoa, N. V., Bang, D. V., Tuan, D. H. & Dien, L. Q. Limited efficacy of guava interplanting on citrus greening disease: Effectiveness of protection against disease invasion breaks down after one year. Crop Prot. 34, 119–126 (2012).Chen, H. C., Sheu, M. J., Lin, L. Y. & Wu, C. M. Chemical composition of the leaf essential oil of Psidium guajava L. from Taiwan. J. Essent. Oil Res. 19, 345–347 (2007).Garcia, M., Quijano, C. E. & Pino, J. A. Free and glycosidically bound volatiles in guava leaves (Psidium guajava L.) Palmira ICA-I cultivar. J. Essent. Oil Res. 21, 131–134 (2009).Pino, J. A., Aguero, J., Marbot, R. & Fuentes, V. Leaf oil of Psidium guajava L. from Cuba. J. Essent. Oil Res. 13, 61–62 (2001).El-ahmady, S. H., Ashour, M. L. & Wink, M. Chemical composition and anti-in flammatory activity of the essential oils of Psidium guajava fruits and leaves. J. Essent. Oil Res. 25, 475–481 (2013).Ogunwande, I. A., Olawore, N. O., Adeleke, K. A., Ekundayo, O. & Koenig, W. A. Chemical composition of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour Fragr. J 18, 136–138 (2003).Satyal, P., Paudel, P., Lamichhane, B. & Setzer, W. N. Leaf essential oil composition and bioactivity of Psidium guajava from Kathmandu, Nepal. Am. J. Essent. oils Nat. Prod 3, 11–14 (2015).Khadhri, A., El Mokni, R., Almeida, C., Nogueira, J. M. F. & AraĂșjo, M. E. M. Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Ind. Crops Prod 52, 29–31 (2014).Tholl, D. et al. Practical approaches to plant volatile analysis. Plant Journal 45, 540–560 (2006).Rouseff, R. L., Onagbola, E. O., Smoot, J. M. & Stelinski, L. L. Sulfur volatiles in guava (Psidium guajava L.) leaves: Possible defense mechanism. J. Agric. Food Chem. 56, 8905–8910 (2008).Robbins, P. S., Alessandro, R. T., Stelinski, L. L. & Lapointe, S. L. Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomol 95, 774–776 (2012).Mann, R. S. et al. Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog., doi: 10.1371/journal.ppat.1002610 (2012).Coutinho-Abreu, I. V., McInally, S., Forster, L., Luck, R. & Ray, A. Odor coding in a disease-transmitting herbivorous insect, the Asian citrus psyllid. Chem. Senses 39, 539–549 (2014).Mann, R. S., Tiwari, S., Smoot, J. M., Rouseff, R. L. & Stelinski, L. L. Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri Kuwayama (Hemiptera: Psyllidae). J. Appl. Entomol 136, 87–96 (2012).Khurana, S. & Siddiqi, O. Olfactory responses of Drosophila larvae. Chem. Senses 38, 315–323 (2013).Martini, X., Willett, D. S., Kuhns, E. H. & Stelinski, L. L. Disruption of vector host preference with plant volatiles may reduce spread of insect-transmitted plant pathogens. J. Chem. Ecol. 42, 357–367 (2016).Kappers, I. F. et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309, 2070–2072 (2005).Schnee, C., Köllner, T. G., Held, M., Turlings, T. C. J. & Gershenzon, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 103, 1129–1134 (2007).Aharoni, A. et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15, 2866–2884 (2003).Delatte, T. L. et al. A primary role for a secondary metabolite: the sesquiterpene caryophyllene affects phyto-hormones in Arabidopsis, in preparation (2017).Tholl, D., Chen, F., Petri, J., Gershenzon, J. & Pichersky, E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42, 757–771 (2005).Chen, F. et al. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15, 481–494 (2003).Reinecke, A. & Hilker, M. P Semiochemicals-Perception and Behavioural Responses by Insects in Annual Plant Reviews (eds C. Voelckel and G. Jander) 47, 115–154 (Wiley John & Sons, Ltd, 2014).Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry 72, 1605–1611 (2011).Webster, B., Bruce, T., Pickett, J. & Hardie, J. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav. 79, 451–457 (2010).Patt, J. M. & SĂ©tamou, M. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environ. Entomol. 39, 618–624 (2010).Paris, T. M., Croxton, S. D., Stansly, P. A. & Allan, S. A. Temporal response and attraction of Diaphorina citri to visual stimuli. Entomol. Exp. Appl. 155, 137–147 (2015).Wenninger, E. J., Stelinski, L. L. & Hall, D. G. Roles of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants. Environ. Entomol 38, 225–234 (2009).Hall, D. G. et al. Greenhouse investigations on the effect of guava on infestations of Asian citrus psyllid in grapefruit. Proc. Fla. State Hort. Soc 121, 104–109 (2008).Ruan, C., Hall, D. G., Liu, B. & Fan, G. Host-choice behavior of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) under laboratory conditions. J. Insect Behav. 28, 138–146 (2015).Zaka, S. M., Zeng, X. & Wang, H. Chemotaxis of adults of the Asiatic citrus psyllid, Diaphorina citri Kuwayama, to volatile terpenes detected from guava leaves. Pak. J. Zool. 47, 153–159 (2015).Wu, S. et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441–1447 (2006).Laothawornkitkul, J. et al. Isoprene emissions influence herbivore feeding decisions. Plant, Cell Environ 31, 1410–1415 (2008).McCallum, E. J. et al. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J. Exp. Bot. 214, 3672–3677 (2011).Beale, M. H. et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. USA 103, 10509–10513 (2006).Yu, X. et al. Expression of an (E)-ÎČ-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation. Crop J 1, 50–60 (2013).Bruce, T. J. A. et al. The first crop plant genetically engineered to release an insect pheromone for defence. Sci. Rep 5, 11183 (2015).Webster, B. & CardĂ©, R. T. Use of habitat odour by host-seeking insects. Biol. Rev. Camb. Philos Soc., doi: 10.1111/brv.12281 (2016).Cen, Y. J., Ye, J. M., Xu, C. B. & Feng, A. W. The taxis of Diaphorina citri to the volatile oils extracted from non-host plants. J. South China Agric. Univ 26, 41–44 (2005).Cazares-Alonso, N. P., Verde Star, M. J., LĂłpez Arroyo, J. I. & Almeyda LeĂłn, I. H. EvaluaciĂłn de diferentes extractos vegetales contra el psĂ­lido asiĂĄtico de los cĂ­tricos Diaphorina citri (Hemiptera: Liviidae). Rev. Colomb. Entomol. 40, 67–73 (2014).Mann, R. S., Rouseff, R. L., Smoot, J. M., Castle, W. S. & Stelinski, L. L. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles. Bull. Entomol. Res. 101, 89–97 (2011).Cook, S. M., Khan, Z. R. & Pickett, J. A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52, 375–400 (2007).Tomaseto, A. F., Krugner, R. & Lopes, J. R. S. Effect of plant barriers and citrus leaf age on dispersal of Diaphorina citri (Hemiptera: Liviidae). J. Appl. Entomol. 140, 91–102 (2016).Setamou, M. & Bartels, D. W. Living on the edges: Spatial niche occupation of Asian citrus psyllid, Diaphorina citri kuwayama (Hemiptera: Liviidae), in citrus groves. PLoS One 10, e0131917 (2015).Bourguet, D. & Guillemaud, T. The hidden and external costs of pesticide use in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 19, 35–120 (Springer International Publishing, 2016).Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).RodrĂ­guez, A. et al. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol. 156, 793–802 (2011).Vet, L. E. M., Lenteren, J. C. V., Heymans, M. & Meelis, E. An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol. Entomol. 8, 97–106 (1983).Schreck, C. E. Techniques for the evaluation of insect repellents: a critical review. Ann. Rev. Entomol 22, 101–119 (1977).Bartlett, M. S. Properties of sufficiency and statistical tests. Proc. R. Soc. A Math. Phys. Eng. Sci 160, 268–282 (1937).Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normailty (complete samples). Biometrika 52, 591–611 (1965).R Developement Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. 1, 409 (2015)
    corecore