15 research outputs found

    Collective Excitation of Spatio-Spectrally Distinct Quantum Dots Enabled by Chirped Pulses

    Full text link
    For a scalable photonic device producing entangled photons, it is desirable to have multiple quantum emitters in an ensemble that can be collectively excited, despite their spectral variability. For quantum dots, Rabi rotation, the most popular method for resonant excitation, cannot assure a universal, highly efficient excited state preparation, because of its sensitivity to the excitation parameters. In contrast, Adiabatic Rapid Passage (ARP), relying on chirped optical pulses, is immune to quantum dot spectral inhomogeneity. Here, we advocate the robustness of ARP for simultaneous excitation of the biexciton states of multiple quantum dots. For positive chirps, we find that there is also regime of phonon advantage that widens the tolerance range of spectral detunings. Using the same laser pulse we demonstrate the simultaneous excitation of energetically and spatially distinct quantum dots. Being able to generate spatially multiplexed entangled photon pairs is a big step towards the scalability of photonic devices

    Compact Chirped Fiber Bragg Gratings for Single-Photon Generation from Quantum Dots

    Full text link
    A scalable source of single photons is a key constituent of an efficient quantum photonic architecture. To realize this, it is beneficial to have an ensemble of quantum emitters that can be collectively excited with high efficiency. Semiconductor quantum dots hold great potential in this context, due to their excellent photophysical properties. Spectral variability of quantum dots is commonly regarded as a drawback introduced by the fabrication method. However, this is beneficial to realize a frequency-multiplexed single-photon platform. Chirped pulse excitation, relying on the so-called adiabatic rapid passage, is the most efficient scheme to excite a quantum dot ensemble due to its immunity to individual quantum dot parameters. Yet, the existing methods of generating chirped laser pulses to excite a quantum emitter are bulky, lossy, and mechanically unstable, which severely hampers the prospects of a quantum dot photon source. Here, we present a compact, robust, and high-efficiency alternative for chirped pulse excitation of solid-state quantum emitters. Our simple plug-and-play module consists of chirped fiber Bragg gratings (CFBGs), fabricated via femtosecond inscription, to provide high values of dispersion in the near-infrared spectral range, where the quantum dots emit. We characterize and benchmark the performance of our method via chirped excitation of a GaAs quantum dot, establishing high-fidelity single-photon generation. Our highly versatile chirping module coupled to a photon source is a significant milestone toward realizing practical quantum photonic devices

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016

    Sustainable and Scalable Synthesis of Noroxymorphone via a Key Electrochemical N-Demethylation Step

    No full text
    Noroxymorphone is a pivotal intermediate in the synthesis of important opioid antagonists such as naloxone and naltrexone. The preparation of noroxymorphone from thebaine, a naturally occurring opioate isolated from poppy extract, is a multistep sequence in which oxycodone is first generated and then N- and O-demethylated. Both demethylations are problematic from the safety and sustainability viewpoint, as they involve harmful reagents such as alkyl chloroformates or boron tribromide. Herein, we present a green, safe an efficient telescoped process for the N- and O-demethylation of oxycodone. The method is based on the anodic oxidative intramolecular cyclization of the N-methyl tertiary amine with the 14-hydroxyl group of the morphinan, followed by hydrolysis with hydrobromic acid, which releases the carbon from both heteroatoms. The electrolysis process has been transferred to a scalable flow electrolysis cell, significantly improving the reaction throughput and increasing the space-time yield over 300-fold with respect to batch. The sustainability of the new methodology has been assessed by means of green metrics and qualitative indicators. The sustainability assessment has demonstrated that the new methodology is far superior to the conventional chloroformate proces

    Design and Manufacturing of a Metal-Based Mechanical Metamaterial with Tunable Damping Properties

    No full text
    In the present work, a novel concept for metallic metamaterials is presented, motivated by the creation of next-generation reversible damping systems that can be exposed to various environmental conditions. For this purpose, a unit cell is designed that consists of a parallel arrangement of a spring and snap-fit mechanism. The combination of the two concepts enables damping properties one order of magnitude higher than those of the constituting metal material. The spring element stores elastic energy while the snap-fit allows to absorb and dissipate energy and to reach a second stable state. Different configurations of single unit cells and connected cell assemblies are manufactured by laser powder bed fusion using Ti6Al4V powder. The dimensioning is supported by finite element modelling and the characteristic properties of the unit cells are studied in cyclic compression experiments. The metamaterial exhibits damping properties in the range of polymeric foams while retaining its higher environmental resistance. By variation of selected geometrical parameters, either bistable or self-recovering characteristics are achieved. Therefore, a metamaterial as an assembly of the described unit cells could offer a high potential as a structural element in future damping or energy storage systems operating at elevated temperatures and extreme environmental conditions

    Demonstration and modelling of time-bin entangled photons from a quantum dot in a nanowire

    Full text link
    Resonant excitation of the biexciton state in an InAsP quantum dot by a phase-coherent pair of picosecond pulses allows for preparing time-bin entangled pairs of photons via the biexciton-exciton cascade. We show that this scheme can be efficiently implemented for a dot embedded in an InP nanowire. The underlying physical mechanisms can be represented and quantitatively analyzed by an effective three-level open system master equation. Simulation parameters including decay and intensity depending dephasing rates are extracted from experimental data, which in turn allow for predicting the resulting entanglement and finding optimal operating conditions

    A Droplet Flow Platform with Multiple Process Analytics Facilitates Flexible Reaction Optimization

    No full text
    Flow processing offers many opportunities to optimize reactions in a rapid and automated manner, yet often requires relatively large quantities of input materials. To combat this, we report the use of a flexible droplet flow reactor, equipped with two analytical instruments, for low-volume optimization experiments. A Buchwald-Hartwig amination toward the drug olanzapine, with 6 independent optimizable variables, was optimized using three different automated approaches: self-optimization, design of experiments and kinetic modeling. These approaches are complementary and provide differing information on the reaction: pareto optimal operating points, response surface models and mechanistic models, respectively. The results were achieved using <10% of the material that would be required for standard flow operation. Finally, a chemometric model was built utilizing automated data handling and three subsequent validation experiments demonstrated good agreement between the droplet flow reactor and a standard (larger scale) flow reactor

    Controlling the photon number coherence of solid-state quantum light sources for quantum cryptography

    No full text
    Abstract Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) based on single photons. A critical element regarding the security of QKD protocols is the photon number coherence (PNC), i.e., the phase relation between the vacuum and one-photon Fock state. To obtain single photons with the desired properties for QKD protocols, optimal excitation schemes for quantum emitters need to be selected. As emitters, we consider semiconductor quantum dots, that are known to generate on-demand single photons with high purity and indistinguishability. Exploiting two-photon excitation of a quantum dot combined with a stimulation pulse, we demonstrate the generation of high-quality single photons with a controllable degree of PNC. The main tuning knob is the pulse area giving full control from minimal to maximal PNC, while without the stimulating pulse the PNC is negligible in our setup for all pulse areas. Our approach provides a viable route toward secure communication in quantum networks
    corecore