20 research outputs found
Minimal decoherence from inflation
We compute the rate with which super-Hubble cosmological fluctuations are
decohered during inflation, by their gravitational interactions with unobserved
shorter-wavelength scalar and tensor modes. We do so using Open Effective Field
Theory methods, that remain under control at the late times of observational
interest, contrary to perturbative calculations. Our result is minimal in the
sense that it only incorporates the self-interactions predicted by General
Relativity in single-clock models (additional interaction channels should only
speed up decoherence). We find that decoherence is both suppressed by the first
slow-roll parameter and by the energy density during inflation in Planckian
units, but that it is enhanced by the volume comprised within the scale of
interest, in Hubble units. This implies that, for the scales probed in the
Cosmic Microwave Background, decoherence is effective as soon as inflation
proceeds above GeV. Alternatively, if inflation proceeds
at GUT scale decoherence is incomplete only for the scales crossing out the
Hubble radius in the last ~ 13 e-folds, of inflation. We also compute how
short-wavelength scalar modes decohere primordial tensor perturbations, finding
a faster rate unsuppressed by slow-roll parameters. Identifying the parametric
dependence of decoherence, and the rate at which it proceeds, helps suggest
ways to look for quantum effects.Comment: 31 pages + appendices, 7 figure
Influence of Chemical Structure on the Stability and Conductance of Porphyrin Single-Molecule Junctions
Quantum Matter and Optic
Minimal decoherence from inflation
We compute the rate with which super-Hubble cosmological fluctuations are decohered during inflation, by their gravitational interactions with unobserved shorter-wavelength scalar and tensor modes. We do so using Open Effective Field Theory methods, that remain under control at the late times of observational interest, contrary to perturbative calculations. Our result is minimal in the sense that it only incorporates the self-interactions predicted by General Relativity in single-clock models (additional interaction channels should only speed up decoherence). We find that decoherence is both suppressed by the first slow-roll parameter and by the energy density during inflation in Planckian units, but that it is enhanced by the volume comprised within the scale of interest, in Hubble units. This implies that, for the scales probed in the Cosmic Microwave Background, decoherence is effective as soon as inflation proceeds above GeV. Alternatively, if inflation proceeds at GUT scale decoherence is incomplete only for the scales crossing out the Hubble radius in the last ~ 13 e-folds, of inflation. We also compute how short-wavelength scalar modes decohere primordial tensor perturbations, finding a faster rate unsuppressed by slow-roll parameters. Identifying the parametric dependence of decoherence, and the rate at which it proceeds, helps suggest ways to look for quantum effects
Recommended from our members
Cosmic purity lost: perturbative and resummed late-time inflationary decoherence
Abstract
We compute the rate with which unobserved fields decohere other fields to which they couple, both in flat space and in de Sitter space, for spectator scalar fields prepared in their standard adiabatic vacuum. The process is very efficient in de Sitter space once the modes in question pass outside the Hubble scale, displaying the tell-tale phenomenon of secular growth that indicates the breakdown of perturbative methods on a time scale parameterically long compared with the Hubble time. We show how to match the perturbative evolution valid at early times onto a late-time Lindblad evolution whose domain of validity extends to much later times, thereby allowing a reliable resummation of the perturbative result beyond the perturbative regime. Super-Hubble modes turn out to be dominantly decohered by unobserved modes that are themselves also super-Hubble. If applied to curvature perturbations during inflation our observations here could close a potential loophole in recent calculations of the late-time purity of the observable primordial fluctuations.</jats:p
Minimal decoherence from inflation
We compute the rate with which super-Hubble cosmological fluctuations are decohered during inflation, by their gravitational interactions with unobserved shorter-wavelength scalar and tensor modes. We do so using Open Effective Field Theory methods, that remain under control at the late times of observational interest, contrary to perturbative calculations. Our result is minimal in the sense that it only incorporates the self-interactions predicted by General Relativity in single-clock models (additional interaction channels should only speed up decoherence). We find that decoherence is both suppressed by the first slow-roll parameter and by the energy density during inflation in Planckian units, but that it is enhanced by the volume comprised within the scale of interest, in Hubble units. This implies that, for the scales probed in the Cosmic Microwave Background, decoherence is effective as soon as inflation proceeds above GeV. Alternatively, if inflation proceeds at GUT scale decoherence is incomplete only for the scales crossing out the Hubble radius in the last ~ 13 e-folds, of inflation. We also compute how short-wavelength scalar modes decohere primordial tensor perturbations, finding a faster rate unsuppressed by slow-roll parameters. Identifying the parametric dependence of decoherence, and the rate at which it proceeds, helps suggest ways to look for quantum effects
Minimal decoherence from inflation
We compute the rate with which super-Hubble cosmological fluctuations are decohered during inflation, by their gravitational interactions with unobserved shorter-wavelength scalar and tensor modes. We do so using Open Effective Field Theory methods, that remain under control at the late times of observational interest, contrary to perturbative calculations. Our result is minimal in the sense that it only incorporates the self-interactions predicted by General Relativity in single-clock models (additional interaction channels should only speed up decoherence). We find that decoherence is both suppressed by the first slow-roll parameter and by the energy density during inflation in Planckian units, but that it is enhanced by the volume comprised within the scale of interest, in Hubble units. This implies that, for the scales probed in the Cosmic Microwave Background, decoherence is effective as soon as inflation proceeds above GeV. Alternatively, if inflation proceeds at GUT scale decoherence is incomplete only for the scales crossing out the Hubble radius in the last ~ 13 e-folds, of inflation. We also compute how short-wavelength scalar modes decohere primordial tensor perturbations, finding a faster rate unsuppressed by slow-roll parameters. Identifying the parametric dependence of decoherence, and the rate at which it proceeds, helps suggest ways to look for quantum effects
Minimal decoherence from inflation
We compute the rate with which super-Hubble cosmological fluctuations are decohered during inflation, by their gravitational interactions with unobserved shorter-wavelength scalar and tensor modes. We do so using Open Effective Field Theory methods, that remain under control at the late times of observational interest, contrary to perturbative calculations. Our result is minimal in the sense that it only incorporates the self-interactions predicted by General Relativity in single-clock models (additional interaction channels should only speed up decoherence). We find that decoherence is both suppressed by the first slow-roll parameter and by the energy density during inflation in Planckian units, but that it is enhanced by the volume comprised within the scale of interest, in Hubble units. This implies that, for the scales probed in the Cosmic Microwave Background, decoherence is effective as soon as inflation proceeds above GeV. Alternatively, if inflation proceeds at GUT scale decoherence is incomplete only for the scales crossing out the Hubble radius in the last ~ 13 e-folds, of inflation. We also compute how short-wavelength scalar modes decohere primordial tensor perturbations, finding a faster rate unsuppressed by slow-roll parameters. Identifying the parametric dependence of decoherence, and the rate at which it proceeds, helps suggest ways to look for quantum effects