151 research outputs found

    Basin stability approach for quantifying responses of multistable systems with parameters mismatch

    Get PDF
    Acknowledgement This work is funded by the National Science Center Poland based on the decision number DEC-2015/16/T/ST8/00516. PB is supported by the Foundation for Polish Science (FNP).Peer reviewedPublisher PD

    1991] “Analytic predictors for strange non–chaotic attractors,” Phys

    Get PDF
    Analytic conditions are used to predict the bounds in parameter space of the regions of existence of a non-chaotic strange attractor for the quasi-periodically forced van der Pol equation. One bound arises from the condition for existence of a simple quasi-periodic response to the forcing; the other appears to be related to the occurrence of a Hopf bifurcation in the averaged form of the equation

    Practical Stability of Chaotic Attractors

    Get PDF
    Abstract--In this paper we introduce the concept of practical stability and practical stability in finite time for chaotic attractors. The connection between practical and asymptotic stability is discussed

    Controlling Effect of Geometrically Defined Local Structural Changes on Chaotic Hamiltonian Systems

    Full text link
    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a new and minimal method for achieving control of a chaotic system

    Surface Quality of a Work Material Influence on Vibrations in a Cutting Process

    Full text link
    The problem of stability in the machining processes is an important task. It is strictly connected with the final quality of a product. In this paper we consider vibrations of a tool-workpiece system in a straight turning process induced by random disturbances and their effect on a product surface. Basing on experimentally obtained system parameters we have done the simulations using one degree of freedom model. The noise has been introduced to the model by the Langevin equation. We have also analyzed the product surface shape and its dependence on the level of noise.Comment: 12 pages, PDF of figures can be obtained from http://archimedes.pol.lublin.pl/~raf/graf/fpic.pd

    Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator

    Full text link
    Different mechanisms for the creation of strange nonchaotic attractors (SNAs) are studied in a two-frequency parametrically driven Duffing oscillator. We focus on intermittency transitions in particular, and show that SNAs in this system are created through quasiperiodic saddle-node bifurcations (Type-I intermittency) as well as through a quasiperiodic subharmonic bifurcation (Type-III intermittency). The intermittent attractors are characterized via a number of Lyapunov measures including the behavior of the largest nontrivial Lyapunov exponent and its variance as well as through distributions of finite-time Lyapunov exponents. These attractors are ubiquitous in quasiperiodically driven systems; the regions of occurrence of various SNAs are identified in a phase diagram of the Duffing system.Comment: 24 pages, RevTeX 4, 12 EPS figure

    Interruption of torus doubling bifurcation and genesis of strange nonchaotic attractors in a quasiperiodically forced map : Mechanisms and their characterizations

    Full text link
    A simple quasiperiodically forced one-dimensional cubic map is shown to exhibit very many types of routes to chaos via strange nonchaotic attractors (SNAs) with reference to a two-parameter (A−f)(A-f) space. The routes include transitions to chaos via SNAs from both one frequency torus and period doubled torus. In the former case, we identify the fractalization and type I intermittency routes. In the latter case, we point out that atleast four distinct routes through which the truncation of torus doubling bifurcation and the birth of SNAs take place in this model. In particular, the formation of SNAs through Heagy-Hammel, fractalization and type--III intermittent mechanisms are described. In addition, it has been found that in this system there are some regions in the parameter space where a novel dynamics involving a sudden expansion of the attractor which tames the growth of period-doubling bifurcation takes place, giving birth to SNA. The SNAs created through different mechanisms are characterized by the behaviour of the Lyapunov exponents and their variance, by the estimation of phase sensitivity exponent as well as through the distribution of finite-time Lyapunov exponents.Comment: 27 pages, RevTeX 4, 16 EPS figures. Phys. Rev. E (2001) to appea

    Uncertainty Principle for Control of Ensembles of Oscillators Driven by Common Noise

    Full text link
    We discuss control techniques for noisy self-sustained oscillators with a focus on reliability, stability of the response to noisy driving, and oscillation coherence understood in the sense of constancy of oscillation frequency. For any kind of linear feedback control--single and multiple delay feedback, linear frequency filter, etc.--the phase diffusion constant, quantifying coherence, and the Lyapunov exponent, quantifying reliability, can be efficiently controlled but their ratio remains constant. Thus, an "uncertainty principle" can be formulated: the loss of reliability occurs when coherence is enhanced and, vice versa, coherence is weakened when reliability is enhanced. Treatment of this principle for ensembles of oscillators synchronized by common noise or global coupling reveals a substantial difference between the cases of slightly non-identical oscillators and identical ones with intrinsic noise.Comment: 10 pages, 5 figure
    • 

    corecore