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1. INTRODUCTION

One of the fundamental problems in practical applications of chaotic dynamics is the
problem of a stability of a chaotic attractors A, e.g. chaos synchronization [1-10]. The basin
of attraction B(A) is the set of points whose w-limit set is contained in A. In Milnor’s
definition of an attractor [11], the basin of attraction need not include the whole
neighbourhood of the attractor, i.e. wc say that A is a Milnor attractor if 3(A) has positive
Lebesgue measure. However, riddled basins, which have recently been found in practical
physical systems [12-16] have positive Lebesgue measure yet do not contain any neighbour-
hood of the attractor. If the basin of attraction contains the neighbourhood of A, then the
attractor is asymptotically stable.

Most of the chaotic attractors which can be met in practical engineering systems are
quasi-attractors, i.e. the limiting sets enclose the periodic orbils of different topological
types, structurally unstable homoclinic trajectories, etc. Practical systcms are mainly
quasi-hyperbolic [17], i.e. many different types of attractors co-exist in the phase space.

Existing definitions of the stability of chaotic attractors cannot always give sufficient
practical information about the behaviour of the real engineering system which is under the
influence of both permanently acting and short-time impulse-like perturbations. The main
problems in stability analysis of chaotic engineering systems are as following.

« The basin of attraction of the asymptotically stable chaotic attractor can be so small that
perturbations can take a trajectory out of it to the basin of another attractor.

e The system operates in finite time T during which the system cannot reach the attractor,
but for r<<T the system evolves in a limited part of the phase spacc which does not
necessarily include the final attractor of the system [18].
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In this paper we introduce the concept of praclical stability and practical stability in finite
time for chaotic attractors.

The paper is organized as follows. In Section 2 we introducc definitions of practical
stability and practical stability in finite time of chaotic attractors. Examples and the
similarities and differences between asymptotic and practical stability of chaotic attractors
are discussed in Section 3. In this section we also describe the controlling procedure which
allows some asymptotically unstable attractors to be practically stable. Finally, we summarize
our results in Section 4.

2. DEFINITIONS
Consider a dynamical system given by
dx
— = Fx,r 1
g ften (h

which for initial conditions x(z,) = x, € @, where w is an open set, has asymptotically stable
attractor A e W".

Definition 1.
(1) Let the system (1) be under the influence of permanently acting perturbations p(x.r)
50 the perturbed system is in the form

(;;::f(x.f) +plar). (2)

(2} Let the perturbation function p(x.t) fulfii the condition

pCe0ll =8,
where & > 0.

(3} Let Q be a closed, bounded set such that A € Q and w € Q.

if, for all initial conditions x{Iy) = x4 € @, all functions p(x.r) and all t =1, x{r) € Q, then
the attractor A is practically stable (in relation (o sels @, Q and perturbations p(x.r)).

Inn this definition, the function p{x) describes all continuously acting perturbations. The
set w defines the limits of both unccrtaintics in initial conditions and short-time perturba-
tions. Perturbed trajectories x(r) of the system (2) cvolve in the region of the phase space
given by the set €1, which is usually larger than the attractor A of the unperturbed system
(1.

If the attractor A is a fixed point |[19], then in the absence of permanently acting
perturbations (p(x.) =), definition 1 is equivalent to the definition of the stability in the
sense of Lagrangc in relation to the set Q. In every case the practical stability is independent
of the stability in the sensc of Lyapunov.

Many engineering systems operatc in a finite time and for stability investigations of such
systems we can introduce a weaker definition.

Definition 2.

Let conditions {1)—(3) of definition 1 be fulfilled.

If, for all initial conditions x(#,) = x, € w, all functions p(x,) and all fo=1< T, x{) € Q,
then the attractor A is practically stable in finite time 7 (in relation to sets o, £ and
perturbations p{x.)).
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3. EXAMPLES

3.1 Spiral and double-scroll attractors of Chua’s circuit

As an example let us consider the dynamics of Chua’s circuit [20, 21]. Chua’s circuit is an
RLC circuit with four linear elements (two capacitors, one resistor, and one inductor) and a
nonlincar diode, which can be modelled by a system of three differcntial cquations. The
equations for this circuit are :

dx

a;=a(y—x—g(x))

dy

oy —yv+

A A 3)
dz

dt—ﬁy

where the piecewise linear function
gx)=bx +0.5(a —b)(x + 1| —|x — 1]

describes three different voltage—current regimes of the nonlincar diode. Parameters a, 38, a
and b arc constant.

Two of the best-known attractors of system (3}, the spiral and double-scroll attractors, are
shown in Fig. 1. They can be observed for 8 = 14.87, a = —1.42, b = —0.68, a =7.7 (spiral)
and a =10 (double-scroll). In the case of the spiral attractor there are two symmetrical
co-existing attractors A, and A,. All attractors in Fig. 1 are shown together with their basins
of attraction B(A,), B(A;) and B(B), respectively, and one can easily see that they are
asymptotically stable. In Fig. 1 the two-dimensional x-z cross-sections of the three-
dimensional basins of attraction defined by y =0 are shown. Attractors A*, A~ and B are
projected into these cross-sections.

If we define sets w and Q as in Fig. 2(a), and allow perturbations p(x.t) to evolve only in
€, attractor A, is practically stable in relation to sets w, Q and perturbations p(x.f). If these
sets w and Q are too small from a practical point of vicw, and we have to consider sets like
these in Fig. 2(b), the attractor is no longer practically stable.

In the case of a = 10, the double-scroll attractor is the only chaotic attractor of the system
(3), and both spiral attractors are unstable (they do not exist). Now we describe the
controlling procedure based on the Ott—Grebogi-Yorke (OGY) method [22] in the version
given in Ref, [23]. Let us consider the sets w and Q shown in Fig. 3 and perturbations p(x.r)
evolving only in Q. If we want the trajectory to evolve, say, on the A| part of the attractor,
we can define the dangerous zones 9 B and % e Q when the system visits before executing
the undesirable evolution on A;. Our goal is to diverge the trajectory entering the % region
out of it and back to the set Q. To achieve this goal we assume that one of the system
parameters, let us say «, can be adjusted finely around a nominal value ay, i.e.
o € |ag+ Ae,a, — Aa], where Aa/a, << 1.

To control the system onc can build the return map X, ., = f(X,,«) by plotting successive
extrema of the observed map. The dangerous zone % is determined by observing the iterates
of the system as it approaches the undesirable part of the attractor B. The extent of & is
determined by the distribution of points in that zone. We then pick %,,, the dangerous zone
to implement control on, where %,, is the interval in the relurn map composed of the mth
pre-iterates which occur before the trajectory leaving Q.

Following the OGY method [22], we change slightly the control parameter « so that the



46 T. KAPITANIAK and J. BRINDLEY

(a)

-5.0 X 50

Fig. 1. Attractors of Chua’s circuit: 8= 1487, a=—1.42, b =—-068 (a) «="77 (spiral attractor), (b) a =10
(double-scroll attractor). The two-dimensional x—z cross-sections of the three-dimensional basins of attraction
defined by v = { are shown. Auractors A', A and B are projected into these cross-sections,

attractor moved and observed the resulting change in location of the next iterale which
corresponds to the (m — 1)th pre-iterate betore departure from £2, which we call %,, . From
this observation one can calculate the shift of the dangerous zone %, ., per unit change of
the control parameter as [23]

(X, @)
8= -
A

The control is implemented when the system enters the dangerous zone %9,,. As the
location of the region %,,_; is known from previous observations, it is possible to calculate
d,._, defined as the minimum distance by which the attractor has move such that the next
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Fig. 2. Examples of practically stable (a) and practically unstable (b) attractors.
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Fig. 3. Idea of controlling method.
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iterate of the return map falls out of the extent of %,,_, into set €. With this distance we can
calculate the corresponding « parameter change
do = % (4)
L4

The « parameter change given by eqn {4) is an occasional feedback control which,
applied to the system of Fig. 2(b), allows us to make originally unstable spiral attractors A,
or A, practically stable. Generally this method stabilizcs a smallcr unstable chaotic attractor
cmbedded in a larger stable one.

In the numerical experiment we have been able to control a spiral attractor like the one in
Fig. 1{a). The changes in controlling parameters 7o were smaller than 4% of their nominal
value o = 10. The controlled attractor is not identical to the spiral attractor A, of Fig. 1(a)},
but with definition | the evolution shown in this figure can be considered as the evolution on
a practically stable attractor A,.

3.2 Stabilitv of synchronized chaotic attractors

The application of the above definitions will be illustrated for the example of unidirection-
ally coupled systems

%#(-ﬂ (5a)
) b de-y Sh
5 S Hd=y) (5h)

where x,v e M and d e M" is consiant. For d =0 both x and y subsystems cvolvc on the
asymptotically stable chaotic attractor A. It is well-known that there exists a value of o for
which x and y subsystcms can synchronize, i.c. x =y [10]. In the synchronized state the
chaotic attractor A located on the invariant manifold x = y has to be asymptotically stable in
the 2n-dimensional phase space of the coupled system {(5).
In this section we give conditions under which the attractor A can be practically stable.
Introducing a new variable ¢ = x — y. we can rewrite eqns (5a) and (5b) as follows:

dy | )
o =W (6a)
de

o == F) — de (6b)

where eqn (6a) describes the evolution on the chaotic attractor A and eqn {6b) the evolution
transverse to it. In the synchronized statc, when v = v, e = U is a fixed point of cqn (6b).

Suppose there exists a function V(e.t) € €' given for all e,x,y & A and 1 =0 such that:

(1) V(eg)=>01ore=0;

(2) aVier}/dt + [aV (e,)/de]|de/dr] =0 for e e M — w;

3) V(ehy<Vieyt)foreyew, e e R --Qand 1, <1,

We have the following result:

Theorem 1. If there exists a function V(e,r) which fulfils conditions (1)-(3) for all x € A,

then attractor A located on the invariant manifold x = y is practically stable (in relation to
sets @, £ and perturbations p(x,f).

Proof. Consider the solution e(r) for initial conditions x{z;) € w. As set w is open and
w < Q, there exists £ > 1, such that for all x, v € A and ¢e(1)) € w. If for 1 >1, solution e(r) for
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all x e A stays in £, then the theorem is true. Suppose that x{¢) leaves sct Q and, for ¢, > 1,
e(t) e M — Q. From condition (3) one can writc

Vie(t), 1] < V]e(:),t:).

This means that the function V(e,t) grows along e(z), but this is impossible as, based on
conditions (1) and (2), V'(e,t) is a non-growing function. This proves the theorem. O

For the case of practical stability in finite time, suppose there exists a function V{(e,) € 6’
given for all e,x,y e A and ¢ =0 such that:

(1) V(e,)=0 for all ¢ and ¢ = 0;

(2) oV(e,0)/dt + [0V (et} de]|de/dt] =0 fore e R —wand 0=t, st =1 + T,
(3) Vieny<Vierta) fore, e w, e, e R"—Qand t, <, <¢, + T

We have the following result:

Theorem 2. If there exists a function V{e t) which fulfils conditions (1)-(3) for all x € A,
then attractor A located on the invariant manifold x = y is practically stable in finite time T
(in relation to sets w, Q and perturbations p(x.t)).

Proof. The proof is very similar to the proof of Theorem 1, so we omit it.

4. CONCLUSIONS

We hope that the concept of practical stability and practical stability in finite time can be
very useful in the study of chaotic systems. Particularly, it can be useful in the study of chaos
synchronization problems were the property of the practical stability of the synchronized
chaotic state seems to be essential for any practical application of chaos synchronization, for
example secure communication.

It was also shown that the appropriate control of asymptotically unstable systems can
make them practically stable.

Acknowledgements—This work was supported in part by KBN (Poland) under Project No. 7T07A 039 10 and by the
EPSRC (UK) grant No. GR/K 92856.

REFERENCES

1. Fujisaka, H. and Yamada, T., Stability theory of synchronized motion in coupled-oscillator systems. Progr.
Theor. Phys., 1983, 69, 32-47.
2. Afraimovich, V. S., Verichev, N. N. and Rabinovich, M. ., Stochastic synchronization of oscillations in
dissipative systems. Radiophys. Quantum Electron., 1986, 29, 795-803.
3. Pecora. L. and Carroll, T., Synchronization in chaotic systems. Phys. Rev. Leit., 1990, 64, 821-824.
4. Anishchenko, V. 8., Vadivasova, T. E., Postov. D. E. and Safonova, M. A.. Forced and mutuai
synchronization of chaos. Radioeng. Electron., 1991. 36, 338-351.
. Lai, Y.-C. and Grebogi, C., Synchronization of chaotic trajectorics using control. Phys. Rev. E. 1993, 47,
2357-2361.
. Kapitaniak, T., Synchronization of chaos using continuous control. Phys. Rev. E, 1994, 50, 1642-1644.
. Carroll, 'T. L., Amplitude-independent chaotic synchronization, Phys. Rev. £, 1996, 53, 3117-3122.
Chen, Y.-Y.. A wait-and-reset strategy to synchronizing chaotic systems. Phys. Lett., 1996, A221, 34-42.
. Carroll, T. L., Heagy, J. F. and Pecora, L. M., Transforming signals with chaolic synchronization. Phys. Rev. E,
1996, 54, 4676—4680.
10. Kapitaniak, T., Coatrolling Chaos. Academic Press, London, 1996.
11. Milner, J., On the concept of attractor. Commun. Math. Phys., 1985, 99, 177195,
12. Alexander. J. C., Kan, 1., Yorke, J. A, and You, Z., Riddled basins. [ar. J. Bifurcation and Chaos, 1992, 2,
795-812.

wn

O 0o NP



18.

19.
. Madan, R.. (ed), Chua’s Circuir. World Scientific, Singapore, 1994,
21,

2

-

3.

T. KAPITANIAK and J. BRINDLEY

. O, E., Sommerer, J. C., Alexander, L., Kan. [. and Yorke, J. A., The transition to chaotic attractors with

riddted basins. Physica D, 1994. 76, 384-410).

. Heagy, J. F., Carroll, T. and Pecora, L., Experimental and numerical evidence for riddled basins in coupled

chaotic systems. Phys. Rev. Lert.. 1996, 73, 3528-3531.

. Kapitaniak, T., Expenimental observation of riddled behaviour. J. Phvs. A, 1995. 28, L63-1L66,
. Kapitaniak, T. and Chua, L. O., Locally-intermingled basins of attraction in coupled Chua's circuits. far J.

Bifurcation and Chaos, 1996, 6, 357-366.

. Czolezynski. K. and Kapitaniak, T.. Controlling hopt bifurcation in transients. Machine Vibrations, 1996. 6,

a8-71.

Anishchenko, V. 8., Kapitaniak, 1., Safonova, M. and Sesnoviseva, 0., The birth of double-double-scroll
altractor. Phys. Let., 1994, A181, 207-214.

Bogusz, WL, Techaical Stabilirv. PWN, Warsaw, 1966,

Kennedy, M. P., Robust op amp realization of Chua’s circuit. Freguenz, 1992, 46, 66--80.

Ott, E.. Grebogi. C. and Yorke. ). A., Controtling chacs. Phys. Rev. Ler., 199, 64, 11961199,

Parmanada, P. and Eiswirth, M., Suppressing large excursions to a chaotic attractor using occasional feedback
control. Phys. Rev. L, 1996, 54, 1036-1039.



