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1. INTRODUCTION 

One of the fundamental  problems in practical applications of chaotic dynamics is the 
problem of a stability of  a chaotic attractors A, e.g. chaos synchronization [1-10]. The basin 
of attraction /3(A) is the set of points whose a,-limit set is contained in A. In Milnor 's  
definition of an attractor [11], the basin of attraction need not include the whole 
neighbourhood of the attractor,  i.e. we say that A is a Milnor at tractor i f /3(A) has positive 
Lebesgue measure.  However ,  riddled basins, which have recently been found in practical 
physical systems [12-16] have positive Lebesgue measure  yet do not contain any neighbour- 
hood of the attractor. If  the basin of attraction contains the neighbourhood of A, then the 
at tractor is asymptotically stable. 

Most of the chaotic attractors which can be met  in practical engineering systems are 
quasi-attractors, i.e. the limiting sets enclose the periodic orbits of different topological 
types, structurally unstable homoclinic trajectories, etc. Practical systems are mainly 
quasi-hyperbolic [17], i.e. many  different types of attractors co-exist in the phase space. 

Existing definitions of the stability of chaotic attractors cannot always give sufficient 
practical information about  the behaviour  of the real engineering system which is under the 
influence of both permanent ly  acting and short-t ime impulse-like perturbations.  The main 
problems in stability analysis of chaotic engineering systems are as following. 

The basin of attraction of  the asymptotically stable chaotic at tractor can be so small that 
perturbat ions can take a trajectory out of it to the basin of another  attractor. 
The system operates  in finite t ime T during which the system cannot reach the attractor,  
but for t < T the system evolves in a limited part  of the phase space which does not 
necessarily include the final attractor of the system [18]. 
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In this paper  we introduce the concept of practical stability and practical stability in finite 
t ime for chaotic attractors. 

The paper  is organized as follows. In Section 2 we introduce definitions of practical 
stability and practical stability in finite time of chaotic attractors. Examples and the 
similarities and differences between asymptotic and practical stability of chaotic attractors 
are discussed in Section 3. In this section we also describe the controlling procedure which 
allows some asymptotically unstable attractors to be practically stable. Finally, we summarize 
our results in Section 4. 

2. DEFINITIONS 

Consider a dynamical system given by 

dx 
dt f(x,t) (1) 

which for initial conditions x(to)  = xo E ~o, where ~o is an open set, has asymptotically stable 
at tractor  A ~ .~1". 

Definition 1. 
(1) Let  the system (1) be under the influence of permanent ly  acting perturbations p ( x , t )  

so the per turbed system is in the form 

dx 
= f ( x , t )  + p(x,O. (2) 

(2) Let the per turbat ion function p ( x , t )  fulfil the condition 

IIp(x,t)ll -< a, 
where 6 > 0. 

(3) Let ~ be a closed, bounded set such that A ~ £2 and o~ E £2. 
If, for all initial conditions x(to)  = Xo c ~o, all functions p ( x , t )  and all t >- to, x ( t )  E f2, then 

the at tractor A is practically stable (in relation to sets co, £2 and perturbations p ( x d ) ) .  
In this definition, the function p ( x , t )  describes all continuously acting perturbations.  The 

set w defines the limits of both uncertainties in initial conditions and short-time perturba- 
tions. Per turbed trajectories x ( t )  of the system (2) evolve in the region of the phase space 
given by the set ~ ,  which is usually larger than the at tractor A of the unperturbed system 
(1). 

If the at tractor A is a fixed point [19], then in the absence of permanently acting 
perturbat ions ( p ( x , t ) =  0), definition 1 is equivalent to the definition of the stability in the 
sense of Lagrange in relation to the set ~2. In every case the practical stability is independent 
of the stability in the sense of Lyapunov.  

Many engineering systems operate  in a finite time and for stability investigations of such 
systems we can introduce a weaker  definition. 

Definition 2. 
Let conditions (1)-(3)  of  definition 1 be fulfilled. 
If, for all initial conditions x(t{}) = Xo E w,  all functions p ( x , t )  and all to-< t < T,  x ( t )  ~ £2, 

then the at tractor A is practically stable in finite time T (in relation to sets w, ~ and 
perturbat ions p ( x , t )  ). 



Practical stability of chaotic attractors 45 

3. EXAMPLES 

3.1 Spiral and double-scroll attractors o f  Chua's circuit 

As an example let us consider the dynamics of Chua 's  circuit [20, 21]. Chua 's  circuit is an 
R L C  circuit with four linear elements (two capacitors, one resistor, and one inductor) and a 
nonlinear diode, which can be modelled by a system of three differential equations. The 
equations for this circuit are 

dx 
dt a ( y  x g(x)) 

dy 
- - = x  - y  + x  (3) 
dt 

dz 
dt flY 

where the piecewise linear function 

g(x) = bx + 0.5(a - b)(lx + 11-  Ix - 11) 

describes three different vol tage-current  regimes of the nonlinear diode. Parameters  a , / 3 ,  a 
and b are constant. 

Two of the best-known attractors of system (3), the spiral and double-scroll attractors, are 
shown in Fig. 1. They can be observed for /3  = 14.87, a = -1 .42,  b = -0 .68,  a = 7.7 (spiral) 
and a = 10 (double-scroll). In the case of the spiral at tractor there are two symmetrical  
co-existing attractors A~ and A2. All attractors in Fig. 1 are shown together with their basins 
of attraction /3(A~), /3(A2) and /3(B), respectively, and one can easily see that they are 
asymptotically stable. In Fig. 1 the two-dimensional x - z  cross-sections of the three- 
dimensional basins of attraction defined by y = 0 are shown. Attractors  A ÷, A and B are 
projected into these cross-sections. 

If we define sets to and ~ as in Fig. 2(a), and allow perturbations p(x, t)  to evolve only in 
f~, attractor A~ is practically stable in relation to sets to, f~ and perturbations p(x,t).  If these 
sets to and f~ are too small f rom a practical point of view, and we have to consider sets like 
these in Fig. 2(b), the attractor is no longer practically stable. 

In the case of a =- 10, the double-scroll attractor is the only chaotic at tractor of the system 
(3), and both spiral attractors are unstable (they do not exist). Now we describe the 
controlling procedure based on the O t t - G r e b o g i - Y o r k e  (OGY)  method [22] in the version 
given in Ref. [23]. Let  us consider the sets to and f~ shown in Fig. 3 and perturbat ions p(x, t)  
evolving only in ~2. If we want the trajectory to evolve, say, on the A'~ part  of the attractor, 
we can define the dangerous zones ~ E B and ~ ~ f~ when the system visits before executing 
the undesirable evolution on A~. Our  goal is to diverge the trajectory entering the ~b region 
out of it and back to the set fL To achieve this goal we assume that one of the system 
parameters ,  let us say a ,  can be adjusted finely around a nominal value ao, i.e. 
a ~ [ao + A a , a o -  2~a], where Aalao<< 1. 

To control the system one can build the return map X,,÷~ = f (X, , ,a)  by plotting successive 
ext rema of the observed map. The dangerous zone ~ is determined by observing the iterates 
of the system as it approaches the undesirable part  of the at tractor B. The extent of ~ is 
determined by the distribution of points in that zone. We then pick ~ .... the dangerous zone 
to implement  control on, where ~ , ,  is the interval in the return map  composed of the ruth 
pre-i terates which occur before the trajectory leaving f2. 

Following the O G Y  method [22], we change slightly the control pa ramete r  a so that the 
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Fig. 1. Attractors of Chua's circuit: /3 = 14.87. a =-1.42.  b = 0.68: (a) c~ = 7.7 (spiral attractor), (b) c~ = 10 
(double-scroll attractor). The two-dimensional x - z  cross-sections of the three-dimensional basins of attraction 

defined by y = 0 are shown. Attractors A +, A and B are projected into these cross-sections. 

a t t r a c t o r  m o v e d  a n d  o b s e r v e d  the  r e s u l t i n g  c h a n g e  in l o c a t i o n  o f  the  n e x t  i t e r a t e  wh ich  

c o r r e s p o n d s  to t he  (m - 1 ) t h  p r e - i t e r a t e  b e f o r e  d e p a r t u r e  f r o m  £L w h i c h  we  call  ~,,, ~. F r o m  

this o b s e r v a t i o n  o n e  can  c a l c u l a t e  t he  shif t  o f  the  d a n g e r o u s  z o n e  ~z,, ~ p e r  uni t  c h a n g e  o f  

the  c o n t r o l  p a r a m e t e r  as [23] 

,~j'(X,,,~) 
g -  

ePo~ 

T h e  c o n t r o l  is i m p l e m e n t e d  w h e n  the  s y s t e m  e n t e r s  the  d a n g e r o u s  z o n e  ~),,,. A s  the  

l o c a t i o n  o f  t he  r e g i o n  ~2,,, 1 is k n o w n  f r o m  p r e v i o u s  o b s e r v a t i o n s ,  it is poss ib le  to  ca l cu la t e  

d,,  I d e f i n e d  as the  m i n i m u m  d i s t a n c e  by which  the  a t t r a c t o r  has  m o v e  such  tha t  the  n e x t  
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Fig. 2. Examples of practically stable (a) and practically unstable (b) attractors. 
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Fig. 3. Idea of controlling method. 
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iterate of  the re turn  m a p  falls out  of  the extent  of  ?/~m- ~ into set ~ .  With this distance we can 
calculate the cor responding  a pa rame te r  change 

d,,, 1 
a~ - ( 4 )  

g 

The  a pa rame te r  change given by eqn (4) is an occasional  feedback control  which, 
applied to the system of Fig. 2(b), allows us to make  originally unstable spiral at t ractors  A~ 
or  A2 practically stable. Genera l ly  this me thod  stabilizes a smaller unstable chaotic  at t ractor  
e m b e d d e d  in a larger stable one. 

In the numerical  exper iment  we have been  able to control  a spiral a t t ractor  like the one in 
Fig. l (a) .  The  changes  in controll ing parameters  an  were smaller than 4% of their nominal  
value c~ = 10. The  control led at t ractor  is not  identical to the spiral a t t ractor  At of  Fig. l(a) ,  
but  with definition 1 the evolut ion shown in this figure can be considered as the evolut ion on 
a practically stable a t t ractor  A~. 

3.2 Stability o f  synchronized chaotic attractors 

The  applicat ion of  the above  definitions will be illustrated for the example of  unidirection- 
ally coupled  systems 

dx 
-d; = f ( x )  (5a) 

~ = f ( y )  + d(x - y) (5b) 

where x , y  ~ ~ "  and d E ~ "  is constant. For d = 0 both x and y subsystems evolve on the 
asymptotically stable chaotic attractor A. It is well-known that there exists a value of d for 
which x and y subsystems can synchronize,  i.e. x = y  [10]. In the synchronized state the 
chaot ic  a t t ractor  A located on the invariant manifold x = y has to be asymptotical ly stable in 
the 2n-dimensional  phase space of  the coupled system (5). 

In this section we give condit ions under  which the at t ractor  A can be practically stable. 
In t roduc ing  a new variable e = x  - y ,  we can rewrite eqns (5a) and (5b) as follows: 

dx 
- - z  

dt f ( x )  (6a) 

de 
dtt = f ( x )  - f ( y )  - de (6b) 

where  eqn (6a) describes the evolut ion on the chaotic a t t ractor  A and eqn (6b) the evolution 
transverse to it. In the synchronized  state, when  x = y,  e = 0 is a fixed point  of  eqn (6b). 

Suppose  there  exists a funct ion V(e,t) E ~ given for all e,x,y E A and t - > 0  such that: 

(1) V(e,t) > 0 for e ¢ 0: 
(2) OV(e,t)/dt + [OV(e,t)/3e][de/dt] <- 0 for e E ,~11" - to: 
(3) V(e~,t~)< V(e2,t2) for e~ E w, e2 e ~ " - - f ~  and t~ <t2.  

We have the following result: 

T h e o r e m  1. If  there exists a function V(e,t) which fulfils condit ions (1) - (3)  for all x E A, 
then a t t ractor  A located on the invariant  manifold x = y  is practically stable (in relation to 
sets oJ, ~) and per turba t ions  p(x,t).  

Proof.  Consider  the solution e(t) for initial condit ions x(to) E to. As set to is open  and 
to c fL there exists t~ > to such that for all x, y E A and e(tt) E to. If for t > t~ solution e(t) for 
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all x ~ A stays in f~, t hen  the  t h e o r e m  is t rue.  Suppose  tha t  x( t )  l eaves  set f l  and ,  for  t2 > tl, 
e(t2) ~ ~t n - ~ .  F r o m  cond i t i on  (3) one  can wr i te  

V[e( tO, t l  ] < V[e(t2),12]. 

This  m e a n s  tha t  the  func t ion  V(e , t )  grows a long  e( t ) ,  bu t  this is imposs ib le  as, b a s e d  on  
cond i t ions  (1) and  (2), V(e , t )  is a non -g rowing  funct ion .  This  p roves  the  t h e o r e m .  []  

F o r  the  case  of  p rac t ica l  s tabi l i ty  in finite t ime,  suppose  the re  exists a func t ion  V(e , t )  E ~1 
given for  all e,x ,y  ~ A and  t >- 0 such that :  

(1) V ( e , t ) > - 0  for  all e and  t-> 0; 
(2) OV(e , t ) /d t  + [OV(e,t)/Oe][de/dt] <-- 0 for  e ~ ~ "  - to and  0 ~< tl ~; t -< tl + T; 
(3) V(e l , t  0 < V(e2,t2) for  el E to, e2 ~ ~ "  - ~ and  tl < t2 --- tl + T. 
W e  have  the  fo l lowing  resul t :  

Theorem 2. If  t he re  exists  a func t ion  V(e , t )  which fulfils cond i t ions  ( 1 ) - ( 3 )  for  all  x ~ A,  
then  a t t r ac to r  A loca t ed  on  the  invar ian t  man i fo ld  x = y is p rac t i ca l ly  s tab le  in finite t ime  T 
(in r e l a t ion  to  sets  to, f~ and  p e r t u r b a t i o n s  p(x , t ) ) .  

Proo f .  T h e  p r o o f  is very  s imi lar  to the  p r o o f  of  T h e o r e m  1, so we omi t  it. 

4. CONCLUSIONS 

W e  h o p e  tha t  the  concep t  of  p rac t ica l  s tabi l i ty  and  prac t ica l  s tabi l i ty  in finite t ime  can be  
very  useful  in the  s tudy  of  chao t ic  systems.  Par t i cu la r ly ,  it can be  useful  in the  s tudy  of  chaos  
synch ron i za t i on  p r o b l e m s  were  the  p r o p e r t y  of  the  p rac t ica l  s tabi l i ty  of  the  synch ron ized  
chaot ic  s ta te  s eems  to be  essent ia l  for  any  prac t ica l  app l i ca t i on  of  chaos  synchron iza t ion ,  for  
e x a m p l e  secure  c o m m u n i c a t i o n .  

I t  was also shown tha t  the  a p p r o p r i a t e  con t ro l  of  a sympto t i ca l l y  uns t ab le  sys tems  can 
m a k e  t h e m  prac t i ca l ly  s table .  
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