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Analytic conditions are used to predict the bounds in parameter space of the regions of existence of a non-chaotic strange
attractor for the quasi-periodically forced van der Pol equation. One bound arises from the condition for existence of a simple
quasi-periodic response to the forcing; the other appears to be related to the occurrence of a Hopf bifurcation in the averaged form

of the equation.

1. Introduction

Chaotic behaviour of solutions to a system of dif-
ferential equations or maps is characterised by the
exponential divergence of neighbouring trajectories
near to or on an attractor, and by the “strangeness”
of the attractor itself. By strangeness we mean hav-
ing a geometrical configuration not definable by a
finite number of points, smooth curves or surfaces.

It is now well established however [1-8] that some
systems are characterised by non-chaotic strange at-
tractors (NSAs). In this case the attractor is geo-
metrically strange, but neighbouring trajectories do
not diverge exponentially. There is no positive Lya-
punov exponent through there may be one or more
which take the value zero. They are clearly distin-
guishable from quasi-periodicity by the form of the
spectrum [4].

NSAs seem to form part of the normal pattern of
behaviour in quasi-periodically forced nonlinear os-
cillators [4,7,8], and their presence has been dem-
onstrated by a number of numerical investigations.
In this note we present two analytic approaches which
give good approximations for the boundaries in pa-
rameter space of regions of existence of non-chaotic
attractors. One approach seeks rigorous bounds on
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the region of existence of a simple quasi-periodic so-
lution; the other examines the condition for Hopf bi-
furcation in an averaged - form of the system. Results
of both approaches are demonstrated for the case of
a quasi-periodically forced van der Pol equation, for
which the regions of existence in parameter space of
NSAs have been deduced from numerical
calculations.

2. Non-chaotic strange attractor for the quasi-
periodically forced van der Pol equation

Numerical evidence of the existence of a non-cha-
otic strange attractor for the quasi-periodically forced
van der Pol equation

X=2A(1=Bx®)x+wix=F cos wt cos Qt
= $F{cos[ (w—RQ)t]+ cos[ (w+2)t]} 2.1)

has been presented elsewhere [7-91].

We can summarise typical results in figs. 1 and 2.
The parameter values in the figures have been cho-
sen to correspond to those used by Qin et al. [10}
in their extensive review of behaviour in a van der
Pol oscillator forced at a single frequency. Note that
the tongues of non-chaotic behaviour in fig. 1 bear
striking resemblance to the tongues of subharmonic
response in their investigation.

In our numerical investigations we used the ODE
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Fig. I. Domains of strange chaotic (hatched) and strange non-
chaotic (dotted) attractors of eq. (2.1); we have chosen values
4=3x10% p=2.4%x10"* wi=5500, w=\'/2/10, in order to
compare with ref. [10]. Note that F=102? corresponds to K,=0.3
and that Q/2n=/.
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Fig. 2. The largest Lyapunov cxponent /., versus £
F=1.15%x10%

procedure of Wolf et al. [14] to compute Lyapunov
exponents. Eq. (2.1) and the appropriate linearised
equation have been solved by the fourth-order
Runge-Kutta method with integration step =/
100(Q2+w).

We should stress that the actual separation of pairs
of trajectories originating from nearby starting con-
ditions does remain small in these regions of non-
chaotic behaviour, even though the attractor near to
which each trajectory remains is indeed strange in a
geometrical sense. This is exemplified in fig. 3, where
we show the variation of separation distance for a
sequence of time steps in the integration of eq. (2.1),
and, for contrast, a sequence of separations for a
similar pair of trajectories for parameter values cor-
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Fig. 3. The separation of nearby trajectories of a strange non-cha-
otic attractor (a) at point a in figs. | and 2 and a chaotic attractor
(b) at point b in figs. 1 and 2.

responding to a chaotic attractor. Each sequence re-
lates to the same block, steps 10000-11000, of the
computation. This difference is obviously of great
practical value in problems in which there is uncer-
tainty in initial data. Plots such as fig. 3 to describe
characteristic properties of NSAs and chaotic ones
have to be long enough as one can find short inter-
vals of time where separation vectors stay approxi-
mately the same even in chaotic systems with large
Lyapunov exponents.

3. Analytical prediction of existence of non-chaotic
strange attractors

The results of fig. 1, and of most other studies of
non-chaotic strange attractors, have been obtained
by direct numerical calculation. Here we exploit re-
sults of a theorem by Urabe [12] to establish a con-
dition for existence of a simple quasi-periodic
solution,

x=acos[(L—w)t+a¢, | +bcos[(Q+w)t+¢,] .
(3.1)
toeq. (2.1).
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Briefly, the condition may be stated: if the con-
stant C, given by

_ Wi r
C‘ma"{ 2 (|w5+(9—w>2|

1
4+ -
|w5—(9+w)2|)’

ﬂ( Q—w + Q+w )}
2 \|w}—(2-w)*| |- (R+w)’|/})’
(3.2)
satisfies the inequality
1/4
1 w%—lz)
< y 33
C< (52{)‘/2(2+2A (3.3)

then eq.(2.1) has a quasi-periodic solution of the
form (3.1). Further details of the modified theorem
are included in ref. [13]. This condition is readily
applied to eq. (2.1), and, choosing A=3X10°
f=2.4%10"3, w3 =5500, w=,/2/10 we find the
boundary indicated in fig. 4 for the region of exis-
tence of quasi-periodic solutions. Beyond this
boundary quasi-periodic solutions no longer exist,
but the Lyapunov exponent is still negative and hence
nearby trajectories do not in general diverge expo-
nentially. Extensive computations of attractors [8]
for eq. (2.1) show that this behaviour is “normal”,
and the whole sequence seems to fit the concept [4]
that both quasi-periodic and non-chaotic strange at-
tractors lie on a particular three-torus embedded in
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Fig. 4. Boundary of existence of the solution (3.1) (dashed line)
and boundaries of Hopf bifurcation (solid line) for eq. (2.1)
(system parameters as in fig. 1).
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the full four-dimensional space. Only when this to-
rus is destroyed is chaos observed.

4. An averaging approach

An alternative approach to establishing bounda-
ries of quasi-period response is through averaging.
We use a multifrequency averaging technique (over
two periods T, =2n/w and T>=2n/2) and exploit
the fact that w <« Q and w < 1, assuming that the so-
lution of (2.1) may be written in the form

x=~a(t) cos wt cos Qt+ b(t) cos wt sin ¢ , (4.1)

where a(t) and b(t) are slowly varying amplitudes.
Expression (4.1) is less general than solution (3.1),
but in the case of (3.1) it would be difficult to com-
pute a(¢) and b(z). The first and second derivatives
of x are taken to be

X~ —=Qa(t) cos wt sin Qt+ b (t) cos wt cos 2t ,
¥ —8%a(t) cos wt cos 2t —Q22b(t) cos wt sin Ot

—a(t)Qcos wt sin 2t+b(t)Q2 cos wt cos Q.
(4.2)

In the derivation of (4.2) besides the usual assump-
tion for transformation from fast variables x, X to
slow variables g, b, i.e. that

a(t) cos Qt+b(t) sin Qt=0,
we have also assumed that
—w[a(t) sin wt cos 2t —b(t) sin wt sin 2t] =0,

since w<< 1.

After averaging over 7, and 7, and linearisation
around the fixed point (a,, by) of the averaged equa-
tions, Hopf bifurcation points can be found by con-
sidering the roots of the characteristic equation

02— (A+D)6+AD—-BC=0,

where

A=Ai[1-p(3a5 - 1b3)], B=—w—2ifaobo,
C=w— jABaghy, D=Ai[1-B(3b§—4ad)],
= (22-1)/29.
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5. Results and discussion

We present the results of sections 4 and 5 in fig.
4, in which the dashed line bounds the region of ex-
istence of quasi-periodic solutions. Comparison with
fig. | confirms that it gives a good prediction of the
boundary of regions of existence of an NSA.

The solid line denotes the occurrence of a Hopf
bifurcation in the averaged equations. It gives a good
approximation to the boundary of onset of chaotic
behaviour.

The approximations are equally robust when
viewed in the three-dimensional parameter space ob-
tained by varying A. Fig. 5 shows the regions of cha-
otic and non-chaotic behaviour plotted against A for
fixed values of F, Q, together with the values of 4 at
which the quasi-periodic solution (3.1) ceases to ex-
ist and at which the Hopf bifurcation in the averaged
equations occurs. Again the agreement is good.

EXISTENCE OF TWO FREQUENCY
QUASIPERIODIC SOLUTION

\ STRANGE NONCHAQTIC

{

HOPF BIFURCATION/

b N

CHAQS |
:l s A

29 30 32 34 x 10°

Fig. 5. Domains of strange chaotic and strange non-chaotic at-
tractors together with the boundary of existence of the solution
(3.1) and Hopf bifurcation: F=1.1 X108, 2=1500 (point ¢ in
fig. 1).
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The coincidence of the NSA in parameter space
with the region of lowest subharmonic response in
the results of Qin et al. suggests that the other
“tongues” of NSA behaviour may be associated with
the cessation of existence of other, ““‘subharmonic”,
quasi-periodic solutions; we have not as yet exam-
ined this conjecture.
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