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Analytic conditions are used to predict the bounds in parameter space of the regions of existence of a non-chaotic strange 
attractor for the quasi-periodically forced van der Pol equation. One bound arises from the condition for existence of a simple 
quasi-periodic response to the forcing; the other appears to be related to the occurrence of a Hopf bifurcation in the averaged form 
of the equation. 

I. Introduction 

Chaotic  behav iour  of  solutions to a system of  dif- 
ferential  equat ions or maps  is character ised by the 
exponent ial  divergence of  neighbouring trajectories  
near to or  on an at tractor ,  and by the "strangeness" 
of  the a t t ractor  itself. By strangeness we mean hav- 
ing a geometrical  configurat ion not definable by a 
finite number  of  points,  smooth  curves or surfaces. 

It is now well established however [ 1-8 ] that some 
systems are character ised by non-chaot ic  strange at- 
t ractors  (NSAs) .  In this case the at t ractor  is geo- 
metr ical ly strange, but  neighbouring trajectories do 
not diverge exponential ly.  There is no posit ive Lya- 
punov exponent  through there may be one or  more 
which take the value zero. They are clearly dist in- 
guishable from quasi-per iodici ty  by the form of  the 
spectrum [ 4 ]. 

NSAs seem to form part  o f  the normal  pat tern of  
behaviour  in quasi-per iodical ly  forced nonl inear  os- 
cillators [4,7,8 ], and their  presence has been dem-  
onstra ted by a number  of  numerica l  investigations. 
In this note we present two analytic approaches which 
give good approx imat ions  for the boundar ies  in pa- 
rameter  space o f  regions of  existence o f  non-chaotic  
attractors.  One approach seeks rigorous bounds  on 
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the region of  existence of  a simple quasi-per iodic  so- 
lution; the other  examines the condi t ion  for H o p f b i -  
furcat ion in an averaged.form of  the system. Results 
of  both approaches are demons t ra ted  for the case of  
a quasi-periodical ly forced van der  Pol equation,  for 
which the regions of  existence in paramete r  space of  
NSAs have been deduced from numerical  
calculations. 

2. Non-chaotic strange attractor for the quasi- 
periodically forced van der Pol equation 

Numerica l  evidence of  the existence of  a non-cha- 
otic strange attractor for the quasi-periodically forced 
van der  Pol equat ion 

5~- 22( 1 - f l x 2 ) j c + o ) ~ x = F c o s  mt cos 12t 

= ½F{cos[ (o) - t ' 2 ) t ]  + cos[ (og+12) t ]}  (2.1)  

has been presented elsewhere [7 -9  ]. 
We can summar ise  typical  results in figs. 1 and 2. 

The paramete r  values in the figures have been cho- 
sen to correspond to those used by Qin et al. [10] 
in their  extensive review of  behaviour  in a van der 
Pol oscil lator  forced at a single frequency. Note  that  
the tongues of  non-chaotic  behaviour  in fig. 1 bear  
striking resemblance to the tongues of  subharmonic  
response in their  investigation. 

In our  numerical  investigations we used the ODE 
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Fig. 1. Domains of strange chaotic (hatched) and strange non- 
chaotic (dotted) attractors of eq. (2.1): we have chosen values 
),=3XI03, fl=2.4X10 -3, ~0=5500, oJ=,'2/10, in order to 
compare with ref. [ 10]. Note that F= 108 corresponds to Ko=0.3 
and that -Q/2rc=l~ 
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Fig. 2. The largest Lyapunov exponent ";-max versus f2: 
F= 1.15× 10 s. 

procedure of Wolf et al. [ 14 ] to compute Lyapunov 
exponents. Eq. (2.1) and the appropriate linearised 
equation have been solved by the fourth-order 
Runge-Kut ta  method with integration step ~/  
100(Q+~o).  

We should stress that the actual separation of pairs 
of trajectories originating from nearby starting con- 
ditions does remain small in these regions of non- 
chaotic behaviour,  even though the attractor near to 
which each trajectory remains is indeed strange in a 
geometrical sense. This is exemplified in fig. 3, where 
we show the variation of separation distance for a 
sequence of time steps in the integration of eq. (2.1), 
and, for contrast, a sequence of separations for a 
similar pair of trajectories for parameter  values cot- 

(a) 

Fig. 3. The separation of nearby trajectories of a strange non-cha- 
otic attractor (a) at point a in figs. 1 and 2 and a chaotic attractor 
(b) at point b in figs. 1 and2. 

responding to a chaotic attractor. Each sequence re- 
lates to the same block, steps 10000-11000,  of the 
computation.  This difference is obviously of great 
practical value in problems in which there is uncer- 
tainty in initial data. Plots such as fig. 3 to describe 
characteristic properties of NSAs and chaotic ones 
have to be long enough as one can find short inter- 
vals of t ime where separation vectors stay approxi- 
mately the same even in chaotic systems with large 
Lyapunov exponents. 

3. Analytical prediction of existence of non-chaotic 
strange attractors 

The results of fig. 1, and of most other studies of 
non-chaotic strange attractors, have been obtained 
by direct numerical  calculation. Here we exploit re- 
suits of a theorem by Urabe [ 12] to establish a con- 
dit ion for existence of a simple quasi-periodic 
solution, 

A'=a cost (-Q--og)/+01 ] + l~ COS[ ( $ ' ~ + ~ o ) t + 0 2  ] , 

(3.1) 

to eq. (2.1). 
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Briefly, the condition may be stated: if  the con- 
stant C, given by 

C = m a x  itoo~ + (n_ to )21  

the full four-dimensional  space. Only when this to- 
rus is destroyed is chaos observed. 

4. An averaging approach 

, ) 
+ i tog_(~2+to)21 , 

I F [ (  K2-to 
2 [ t o ~ -  (£2- to)2  [ 

+ 
i to~_ (t2+to)21 ' 

(3.2) 

satisfies the inequality 

C~ _1 _ _  ( to2  --,,~.2~ 1/4 
( 5 2 ¢ ) ' / 2 \  2 + 2 2 1  ' (3.3) 

then eq. (2.1) has a quasi-periodic solution of  the 
form (3.1).  Further  details of  the modified theorem 
are included in ref. [ 13 ]. This condition is readily 
applied to eq. (2.1),  and, choosing 2 = 3 × 1 0 3 ,  
f l = 2 . 4 × 1 0  -3, to2=5500,  to=x/ /2 /10  we find the 
boundary  indicated in fig. 4 for the region of  exis- 
tence of  quasi-periodic solutions. Beyond this 
boundary quasi-periodic solutions no longer exist, 
but the Lyapunov exponent is still negative and hence 
nearby trajectories do not in general diverge expo- 
nentially. Extensive computat ions  of  attractors [8 ] 
for eq. (2.1) show that this behaviour  is "normal" ,  
and the whole sequence seems to fit the concept  [4 ] 
that both quasi-periodic and non-chaotic strange at- 
tractors lie on a particular three-torus embedded  in 
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Fig. 4. Boundary of existence of the solution ( 3.1 ) (dashed line ) 
and boundaries of Hopf  bifurcation (solid line) for eq. (2.1) 
(system parameters as in fig. 1 ). 

An alternative approach to establishing bounda-  
ries of  quasi-period response is through averaging. 
We use a multifrequency averaging technique (over  
two periods T~=2n/to and T2=2n/g2) and exploit 
the fact that to << £2 and to << 1, assuming that the so- 
lution of  (2.1) may be written in the form 

x~a(t)  costotcosg2t+b(t) cos tot sin t2t,  (4.1) 

where a(t) and b(t) are slowly varying amplitudes. 
Expression (4.1) is less general than solution (3.1),  
but in the case of  (3.1) it would be difficult to com- 
pute a(t) and b(t). The first and second derivatives 
of  x are taken to be 

~ -12a(t) cos tot sin g2t+t'2b(t) cos tot cos g2t, 

X~ --g22a(t) cos tot cos I2t-I22b(t) cos tot sin 12t 

- a ( t)  12 cos tot sin 12t + b ( t )  £2 cos tot cos g2t. 
(4.2) 

In the derivation of  (4.2) besides the usual assump- 
tion for t ransformation f rom fast variables k, 5~ to 
slow variables a, b, i.e. that 

a(t) cos g2t+b(t) sin g2 t=0 ,  

we have also assumed that 

- too  [ a ( t ) sin tot cos g2t -  b ( t ) sin tot sin 12t ] ~ 0 ,  

since to << 1. 
After averaging over  T~ and T2 and linearisation 

around the fixed point (ao, bo) of  the averaged equa- 
tions, H o p f  bifurcation points can be found by con- 
sidering the roots of  the characteristic equation 

62- (A +D)6+AD-BC=O, 

where 

A = 2 [ 1 - f l ( - ~ a ~  , 2 - ~ b o ) ]  , B=-to-2~aobo, 

C = t o - ] 2 f l a o b o ,  D=2[1- fl( ]b~- ~a~) ] , 

o3= ( . Q 2  1)/212.  
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5. Results and discussion 

We present  the results  o f  sect ions  4 and 5 in fig. 

4, in which the  dashed  l ine b o u n d s  the region o f  ex- 

is tence o f  quas i -pe r iod ic  solut ions.  C o m p a r i s o n  with  

fig. 1 conf i rms  that  it gives a good  p red i c t i on  o f  the 

b o u n d a r y  o f  regions  o f  exis tence  o f  an NSA.  

The  solid l ine deno tes  the  occur rence  o f  a H o p f  

b i fu rca t ion  in the  ave raged  equa t ions .  It gives a good 

a p p r o x i m a t i o n  to the  b o u n d a r y  o f  onset  o f  chaot ic  

behav iour .  

The  a p p r o x i m a t i o n s  are equa l ly  robus t  when  

v iewed  in the t h r ee -d imens iona l  p a r a m e t e r  space ob- 

t a ined  by va ry ing  2. Fig. 5 shows the regions o f  cha-  

ot ic  and non-chao t i c  b e h a v i o u r  p lo t t ed  against  2 for 

f ixed values  o f  F, f2, toge ther  wi th  the va lues  o f  2 at 

which the  quas i -pe r iod ic  so lu t ion  (3 .1)  ceases to ex- 

ist and at which  the H o p f b i f u r c a t i o n  in the ave raged  

equa t ions  occurs.  Again  the a g r e e m e n t  is good.  

EXISTENCE OF TWO FREQUENCY 
QUASIPERIODIC SOLUTION 

HOPF BIFURCATION/ 

i /~CHAO 

2.9 3.0 3.2 3.4 x 10 ̀3 

Fig. 5. Domains of strange chaotic and strange non-chaotic at- 
tractors together with the boundary of existence of the solution 
(3.1) and Hopf bifurcation: F= 1.1 × 108, £2= 1500 (point c in 
fig. 1). 

The  co inc idence  o f  the N S A  in p a r a m e t e r  space 

with  the  region o f  lowest  s u b h a r m o n i c  response  in 

the results  o f  Qin  et al. suggests that  the o the r  

" t o n g u e s "  o f  N S A  b e h a v i o u r  may  be assoc ia ted  with  

the cessat ion o f  exis tence  o f  other ,  " s u b h a r m o n i c " ,  

quas i -pe r iod ic  solut ions;  we have  not  as yet exam-  

ined this conjec ture .  
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