136 research outputs found

    A new satellite RNA is associated with natural infections of cucumber mosaic virus in succulent snap bean

    Get PDF
    Cucumber mosaic virus (CMV) was consistently recovered from symptomatic snap bean plants during surveys conducted in 2007 and 2008 in central Wisconsin. A large proportion of these CMV-infected plants contained a single-stranded linear RNA molecule consisting of 339 nucleotides and sharing 90–94% sequence identity with other satellite (sat) RNAs of CMV. Comparison of this satRNA sequence with currently available CMV satRNA sequences suggests this to be a novel satRNA

    Thermal Stabilization of an Endoglucanase by Cyclization

    Get PDF
    An intein-driven protein splicing approach allowed for the covalent linkage between the N- and C-termini of a polypeptide chain to create circular variants of the endo-β-1,3-1,4-glucanase, LicA, from Bacillus licheniformis. Two circular variants, LicA-C1 and LicA-C2, which have connecting loops of 20 and 14 amino acids, respectively, showed catalytic activities that are approximately two and three times higher, respectively, compared to that of the linear LicA (LicA-L1). The thermal stability of the circular variants was significantly increased compared to the linear form. Whereas the linear glucanase lost half of its activity after 3 min at 65 °C, the two circular variants have 6-fold (LicA-C1) and 16-fold (LicA-C2) increased half-life time of inactivation. In agreement with this, fluorescence spectroscopy and differential scanning calorimetry studies revealed that circular enzymes undergo structural changes at higher temperatures compared to that of the linear form. The effect of calcium on the conformational stability and function of the circular LicAs was also investigated, and we observed that the presence of calcium ions results in increased thermal stability. The impact of the length of the designed loops on thermal stability of the circular proteins is discussed, and it is suggested that cyclization may be an efficient strategy for the increased stability of proteins

    A retrospective analysis of bilateral fractures over sixteen years: localisation and variation in treatment of second hip fractures

    Get PDF
    The aim of this study was the evaluation of contralateral hip fractures after a previous hip fracture. For this retrospective analysis patients were selected from the database of the LUMC, a teaching hospital in the south-west of the Netherlands. We analyzed all patients with a second fracture of a hip between 1992 and 2007. The exclusion criteria were high impact trauma and patients with diseases or medication known to have a negative effect on bone metabolism. A total of 1,604 hip fractures were identified. The possible predictive factors for the second fracture and descriptive statistics related to surgery (Hb and HT before and after the operation, total amount of intra- and postoperative blood loss, type of osteosynthesis, complications, time of death after the last fracture, time between arrival in the hospital and operation and hospital stay for both fractures) were recorded. A total of 32 second hip fractures were identified (2%) at a mean of 27.5 (SD 28.9) months after the initial hip fracture. The mean age at the first fracture was 77.2 years (SD 11.7), and 27 of 32 patients were female. Of these 32 patients (64 bilateral hip fractures), 32 fractures were intracapsular (1 femoral neck, 31 subcapital) and 32 were extracapsular fractures (6 subtrochanteric, 26 transtrochanteric). Although 24 of the 32 patients had identical first and second hip fractures, only eight out of 32 hips were treated with the same implants. There was a significant difference in Singh index between both hips at the time of the first fracture. There was also a significant difference in Singh index between the hip which was not fractured compared with its subsequent index when it was broken. All other studied patient and fracture characteristics were not significantly different. In this population the percentage of second hip fractures was relatively low compared to other studies. The choice of implants in this study shows that implants were chosen randomly. Because there is a significant difference in the Singh index during first and second hip fracture, osteoporosis medication might help reduce the incidence of second hip fractures

    Repetitive N-WASP–Binding Elements of the Enterohemorrhagic Escherichia coli Effector EspFU Synergistically Activate Actin Assembly

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) generate F-actin–rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspFU, a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspFU repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspFU are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspFU fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspFU. Whereas clustering of a single EspFU repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspFU derivatives promote actin assembly more efficiently. Moreover, the EspFU repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3–mediated signaling pathways

    Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases

    Get PDF
    Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.National Institutes of Health (U.S.) (New Innovator Award 1DP2OD008435)National Centers for Systems Biology (U.S.) (Grant 1P50GM098792)United States. Defense Threat Reduction Agency (HDTRA1-14-1-0007)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (W911NF13D0001)National Institute of General Medical Sciences (U.S.) (Interdepartmental Biotechnology Training Program 5T32 GM008334)Fonds de la recherche en sante du Quebec (Master's Training Award

    Association of Escherichia coli O157:H7 tir polymorphisms with human infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emerging molecular, animal model and epidemiologic evidence suggests that Shiga-toxigenic <it>Escherichia coli </it>O157:H7 (STEC O157) isolates vary in their capacity to cause human infection and disease. The translocated intimin receptor (<it>tir</it>) and intimin (<it>eae</it>) are virulence factors and bacterial receptor-ligand proteins responsible for tight STEC O157 adherence to intestinal epithelial cells. They represent logical genomic targets to investigate the role of sequence variation in STEC O157 pathogenesis and molecular epidemiology. The purposes of this study were (1) to identify <it>tir </it>and <it>eae </it>polymorphisms in diverse STEC O157 isolates derived from clinically ill humans and healthy cattle (the dominant zoonotic reservoir) and (2) to test any observed <it>tir </it>and <it>eae </it>polymorphisms for association with human (vs bovine) isolate source.</p> <p>Results</p> <p>Five polymorphisms were identified in a 1,627-bp segment of <it>tir</it>. Alleles of two <it>tir </it>polymorphisms, <it>tir </it>255 T>A and repeat region 1-repeat unit 3 (RR1-RU3, presence or absence) had dissimilar distributions among human and bovine isolates. More than 99% of 108 human isolates possessed the <it>tir </it>255 T>A T allele and lacked RR1-RU3. In contrast, the <it>tir </it>255 T>A T allele and RR1-RU3 absence were found in 55% and 57%, respectively, of 77 bovine isolates. Both polymorphisms associated strongly with isolate source (p < 0.0001), but not by pulsed field gel electrophoresis type or by <it>stx</it>1 and <it>stx</it>2 status (as determined by PCR). Two <it>eae </it>polymorphisms were identified in a 2,755-bp segment of 44 human and bovine isolates; 42 isolates had identical <it>eae </it>sequences. The <it>eae </it>polymorphisms did not associate with isolate source.</p> <p>Conclusion</p> <p>Polymorphisms in <it>tir </it>but not <it>eae </it>predict the propensity of STEC O157 isolates to cause human clinical disease. The over-representation of the <it>tir </it>255 T>A T allele in human-derived isolates vs the <it>tir </it>255 T>A A allele suggests that these isolates have a higher propensity to cause disease. The high frequency of bovine isolates with the A allele suggests a possible bovine ecological niche for this STEC O157 subset.</p

    Repetitive N-WASP–Binding Elements of the Enterohemorrhagic Escherichia coli Effector EspFU Synergistically Activate Actin Assembly

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) generate F-actin–rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspFU, a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspFU repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspFU are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspFU fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspFU. Whereas clustering of a single EspFU repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspFU derivatives promote actin assembly more efficiently. Moreover, the EspFU repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3–mediated signaling pathways

    Characterizing RecA-Independent Induction of Shiga toxin2-Encoding Phages by EDTA Treatment

    Get PDF
    Background: The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. Methodology/Principal Findings: The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage l induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg 2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. Conclusions/Significance: Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon o

    Respiratory epithelial cells require Toll-like receptor 4 for induction of Human β-defensin 2 by Lipopolysaccharide

    Get PDF
    BACKGROUND: The respiratory epithelium is a major portal of entry for pathogens and employs innate defense mechanisms to prevent colonization and infection. Induced expression of human β-defensin 2 (HBD2) represents a direct response by the epithelium to potential infection. Here we provide evidence for the critical role of Toll-like receptor 4 (TLR4) in lipopolysaccharide (LPS)-induced HBD2 expression by human A549 epithelial cells. METHODS: Using RTPCR, fluorescence microscopy, ELISA and luciferase reporter gene assays we quantified interleukin-8, TLR4 and HBD2 expression in unstimulated or agonist-treated A549 and/or HEK293 cells. We also assessed the effect of over expressing wild type and/or mutant TLR4, MyD88 and/or Mal transgenes on LPS-induced HBD2 expression in these cells. RESULTS: We demonstrate that A549 cells express TLR4 on their surface and respond directly to Pseudomonas LPS with increased HBD2 gene and protein expression. These effects are blocked by a TLR4 neutralizing antibody or functionally inactive TLR4, MyD88 and/or Mal transgenes. We further implicate TLR4 in LPS-induced HBD2 production by demonstrating HBD2 expression in LPS non-responsive HEK293 cells transfected with a TLR4 expression plasmid. CONCLUSION: This data defines an additional role for TLR4 in the host defense in the lung
    corecore