62 research outputs found

    Development of a Zoo Walk Navigation System using the Positional Measurement Technology and the Wireless Communication Technology

    Get PDF
    In this article, we propose and evaluate a Zoo Walk Navigation System consistings of the Animal Contents Registering and Editing Web Management System and the Animal Contents Browsing and Acquiring Smartphone Application. The Animal Contents Registering and Editing Web Management System for zoo staff enables to register/edit various animal contents. Thereby, this web management system provides real-time and flesh zoo information to the Animal Contents Browsing and Acquiring Smartphone Application. On the other hand, the Animal Contents Browsing and Acquiring Smartphone Application for zoo visitors enables to browse various animal contents which zoo staff registered through the Animal Contents Registering and Editing Web Management System. The Animal Contents Browsing and Acquiring Smartphone Application has the animal guide browsing function, the animal quiz function, the beacon notification browsing function, the zoo map navigating function, and the AR camera function. Zoo visitors can enjoy a zoo park using this smartphone application. This system is the new type navigation system which zoo staff can renew contents to avoid contents obsolescence. And, this system always provides new information to zoo visitors in real time by the beacon notification function

    A Comprehensive Study of Short Bursts from SGR 1806-20 and SGR 1900+14 Detected by HETE-2

    Get PDF
    We present the results of temporal and spectral studies of the short burst (less than a few hundred milliseconds) from the soft gamma repeaters (SGRs) 1806-20 and 1900+14 using the HETE-2 samples. In five years from 2001 to 2005, HETE-2 detected 50 bursts which were localized to SGR 1806-20 and 5 bursts which were localized to SGR 1900+14. Especially SGR 1806-20 was active in 2004, and HETE-2 localized 33 bursts in that year. The cumulative number-intensity distribution of SGR 1806-20 in 2004 is well described by a power law model with an index of -1.1+/-0.6. It is consistent with previous studies but burst data taken in other years clearly give a steeper distribution. This may suggest that more energetic bursts could occur more frequently in periods of greater activity. A power law cumulative number-intensity distribution is also known for earthquakes and solar flares. It may imply analogous triggering mechanisms. Although spectral evolution during bursts with a time scale of > 20 ms is not common in the HETE-2 sample, spectral softening due to the very rapid (< a few milliseconds) energy reinjection and cooling may not be excluded. The spectra of all short bursts are well reproduced by a two blackbody function (2BB) with temperatures ~4 and ~11 keV. From the timing analysis of the SGR 1806-20 data, a time lag of 2.2+/-0.4 ms is found between the 30-100 keV and 2-10 keV radiation bands. This may imply (1) a very rapid spectral softening and energy reinjection, (2) diffused (elongated) emission plasma along the magnetic field lines in pseudo equilibrium with multi-temperatures, or (3) a separate (located at < 700 km) emission region of softer component (say, ~4 keV) which could be reprocessed X-rays by higher energy (> 11 keV) photons from an emission region near the stellar surface.Comment: 50 pages, 14 figures, accepted for publication in PAS

    New high-efficiency source of photon pairs for engineering quantum entanglement

    Full text link
    We have constructed an efficient source of photon pairs using a waveguide-type nonlinear device and performed a two-photon interference experiment with an unbalanced Michelson interferometer. Parametric down-converted photons from the nonlinear device are detected by two detectors located at the output ports of the interferometer. Because the interferometer is constructed with two optical paths of different length, photons from the shorter path arrive at the detector earlier than those from the longer path. We find that the difference of arrival time and the time window of the coincidence counter are important parameters which determine the boundary between the classical and quantum regime. When the time window of the coincidence counter is smaller than the arrival time difference, fringes of high visibility (80±\pm 10%) were observed. This result is only explained by quantum theory and is clear evidence for quantum entanglement of the interferometer's optical paths.Comment: 4 pages, 4 figures, IQEC200

    An Optically Dark GRB Observed by HETE-2: GRB 051022

    Full text link
    GRB 051022 was detected at 13:07:58 on 22 October 2005 by HETE-2. The location of GRB 051022 was determined immediately by the flight localization system. This burst contains multiple pulses and has a rather long duration of about 190 seconds. The detections of candidate X-ray and radio afterglows were reported, whereas no optical afterglow was found. The optical spectroscopic observations of the host galaxy revealed the redshift z = 0.8. Using the data derived by HETE-2 observation of the prompt emission, we found the absorption N_H = 8.8 -2.9/+3.1 x 10^22 cm^-2 and the visual extinction A_V = 49 -16/+17 mag in the host galaxy. If this is the case, no detection of any optical transient would be quite reasonable. The absorption derived by the Swift XRT observations of the afterglow is fully consistent with those obtained from the early HETE-2 observation of the prompt emission. Our analysis implies an interpretation that the absorbing medium could be outside external shock at R ~ 10^16 cm, which may be a dusty molecular cloud.Comment: 6 pages, 2 figures, accepted for publication in PASJ lette

    Structural basis of Sec-independent membrane protein insertion by YidC

    Get PDF
    [プレă‚čăƒȘăƒȘăƒŒă‚č]ăƒă‚€ă‚Șă‚”ă‚€ă‚šăƒłă‚čç ”ç©¶ç§‘è†œćˆ†ć­è€‡ćˆæ©Ÿèƒœć­Šç ”ç©¶ćź€ăźćĄšćŽŽæ™șäčŸć‡†æ•™æŽˆă‚‰ăźç ”ç©¶ă‚°ăƒ«ăƒŒăƒ—ăŒă€ă‚żăƒłăƒ‘ă‚ŻèłȘă‚’çŽ°èƒžè†œă«ç”„ăżèŸŒă‚€ăƒĄă‚«ăƒ‹ă‚șăƒ ă‚’è§Łæ˜Žă—ăŸă—ăŸïŒˆ2014/04/17Newly synthesized membrane proteins must be accurately inserted into the membrane, folded and assembled for proper functioning. The protein YidC inserts its substrates into the membrane, thereby facilitating membrane protein assembly in bacteria; the homologous proteins Oxa1 and Alb3 have the same function in mitochondria and chloroplasts, respectively1, 2. In the bacterial cytoplasmic membrane, YidC functions as an independent insertase and a membrane chaperone in cooperation with the translocon SecYEG3, 4, 5. Here we present the crystal structure of YidC from Bacillus halodurans, at 2.4 Å resolution. The structure reveals a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm but closed on the extracellular side. Structure-based in vivo analyses reveal that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. We propose an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove recruits the extracellular regions of substrates into the low-dielectric environment of the membrane

    COVID-19 vaccine effectiveness against severe COVID-19 requiring oxygen therapy, invasive mechanical ventilation, and death in Japan: A multicenter case-control study (MOTIVATE study).

    Get PDF
    INTRODUCTION: Since the SARS-CoV-2 Omicron variant became dominant, assessing COVID-19 vaccine effectiveness (VE) against severe disease using hospitalization as an outcome became more challenging due to incidental infections via admission screening and variable admission criteria, resulting in a wide range of estimates. To address this, the World Health Organization (WHO) guidance recommends the use of outcomes that are more specific to severe pneumonia such as oxygen use and mechanical ventilation. METHODS: A case-control study was conducted in 24 hospitals in Japan for the Delta-dominant period (August-November 2021; "Delta") and early Omicron (BA.1/BA.2)-dominant period (January-June 2022; "Omicron"). Detailed chart review/interviews were conducted in January-May 2023. VE was measured using various outcomes including disease requiring oxygen therapy, disease requiring invasive mechanical ventilation (IMV), death, outcome restricting to "true" severe COVID-19 (where oxygen requirement is due to COVID-19 rather than another condition(s)), and progression from oxygen use to IMV or death among COVID-19 patients. RESULTS: The analysis included 2125 individuals with respiratory failure (1608 cases [75.7%]; 99.2% of vaccinees received mRNA vaccines). During Delta, 2 doses provided high protection for up to 6 months (oxygen requirement: 95.2% [95% CI:88.7-98.0%] [restricted to "true" severe COVID-19: 95.5% {89.3-98.1%}]; IMV: 99.6% [97.3-99.9%]; fatal: 98.6% [92.3-99.7%]). During Omicron, 3 doses provided high protection for up to 6 months (oxygen requirement: 85.5% [68.8-93.3%] ["true" severe COVID-19: 88.1% {73.6-94.7%}]; IMV: 97.9% [85.9-99.7%]; fatal: 99.6% [95.2-99.97]). There was a trend towards higher VE for more severe and specific outcomes. CONCLUSION: Multiple outcomes pointed towards high protection of 2 doses during Delta and 3 doses during Omicron. These results demonstrate the importance of using severe and specific outcomes to accurately measure VE against severe COVID-19, as recommended in WHO guidance in settings of intense transmission as seen during Omicron
    • 

    corecore