2,814 research outputs found

    Impurity-induced frustration in correlated oxides

    Full text link
    Using the example of Zn-doped La2CuO4, we demonstrate that a spinless impurity doped into a non-frustrated antiferromagnet can induce substantial frustrating interactions among the spins surrounding it. This counterintuitive result is the key to resolving discrepancies between experimental data and earlier theories. Analytic and quantum Monte Carlo studies of the impurity-induced frustration are in a close accord with each other and experiments. The mechanism proposed here should be common to other correlated oxides as well.Comment: 4 pages, updated figures, accepted versio

    Reconstruction of human protein interolog network using evolutionary conserved network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.</p> <p>Results</p> <p>This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.</p> <p>Conclusion</p> <p>Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.</p

    Prevalence of Dyslipidemia in Patients Receiving Health Checkups: A Hospital-Based Study

    Get PDF
    We used the dataset from one medical center in Taiwan to explore the prevalence of dyslipidemia, which included 2695 subjects receiving private health checkups in 2003-2004. The overall prevalence of hypercholesterolemia was 53.3% in men and 48.2% in women (P = 0.008). The overall prevalence of hypertriglyceridemia was 29.3% in men and 13.7% in women (P < 0.001). The overall prevalence of elevated LDL level was 50.7% in men and 37.9% in women (P < 0.001). The overall prevalence of low HDL level was 47.4% in men and 53% in women (P = 0.004)

    The influence of localization and materialization of mathematics activities on the indigenous first grade students’ learning effects: Two assessment results

    Get PDF
    This research aimed to discuss the indigenous students’ learning effects of mathematics which was based on the self-designed localization and materialization of mathematics activities and had proceeded for one year. The quasi-experimental method was used in this research. There were 58 indigenous first grade students which were divided into three experimental groups (A, B, C) and one control group (D). Experimental instruments embodied written tests and manipulative tests which were designed by researchers according to the indicators proclaimed by Ministry of Education. The main findings were as followed: (1) The influence of localization and materialization of mathematics activities on the indigenous first grade students’ learning effects was limited. (2) According to the result of Paired T-test of the written and manipulative tests, most of scores of manipulative tests were higher written tests

    Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells

    Get PDF
    The dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine- tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer disease. Therefore, understanding the network mechanisms of inhibitory control of GCs is of functional and pathophysiological importance. GABAergic inhibitory INs are heterogeneous, but it is unclear how individual subtypes contribute to GC activity. Using cell-type-specific optogenetic perturbation, we investigated whether and how two major IN populations defined by parvalbumin (PV) and somatostatin (SST) expression, regulate GC input transformations. We showed that PV-expressing (PV+) INs, and not SST- expressing (SST+) INs, primarily suppress GC responses to single cortical stimulation. In addition, these two IN classes differentially regulate GC responses to θ and γ frequency inputs from the cortex. Notably, PV+ INs specifically control the onset of the spike series, whereas SST+ INs preferentially regulate the later spikes in the series. Together, PV+ and SST+ GABAergic INs engage differentially in GC input-output transformations in response to various activity patterns

    Transformer-based Image Compression with Variable Image Quality Objectives

    Full text link
    This paper presents a Transformer-based image compression system that allows for a variable image quality objective according to the user's preference. Optimizing a learned codec for different quality objectives leads to reconstructed images with varying visual characteristics. Our method provides the user with the flexibility to choose a trade-off between two image quality objectives using a single, shared model. Motivated by the success of prompt-tuning techniques, we introduce prompt tokens to condition our Transformer-based autoencoder. These prompt tokens are generated adaptively based on the user's preference and input image through learning a prompt generation network. Extensive experiments on commonly used quality metrics demonstrate the effectiveness of our method in adapting the encoding and/or decoding processes to a variable quality objective. While offering the additional flexibility, our proposed method performs comparably to the single-objective methods in terms of rate-distortion performance

    Magnon-induced non-Markovian friction of a domain wall in a ferromagnet

    Full text link
    Motivated by the recent study on the quasiparticle-induced friction of solitons in superfluids, we theoretically study magnon-induced intrinsic friction of a domain wall in a one-dimensional ferromagnet. To this end, we start by obtaining the hitherto overlooked dissipative interaction of a domain wall and its quantum magnon bath to linear order in the domain-wall velocity and to quadratic order in magnon fields. An exact expression for the pertinent scattering matrix is obtained with the aid of supersymmetric quantum mechanics. We then derive the magnon-induced frictional force on a domain wall in two different frameworks: time-dependent perturbation theory in quantum mechanics and the Keldysh formalism, which yield identical results. The latter, in particular, allows us to verify the fluctuation-dissipation theorem explicitly by providing both the frictional force and the correlator of the associated stochastic Langevin force. The potential for magnons induced by a domain wall is reflectionless, and thus the resultant frictional force is non-Markovian similarly to the case of solitons in superfluids. They share an intriguing connection to the Abraham-Lorentz force that is well-known for its causality paradox. The dynamical responses of a domain wall are studied under a few simple circumstances, where the non-Markovian nature of the frictional force can be probed experimentally. Our work, in conjunction with the previous study on solitons in superfluids, shows that the macroscopic frictional force on solitons can serve as an effective probe of the microscopic degrees of freedom of the system.Comment: 13 pages, 2 figure
    corecore