80 research outputs found

    Age, growth and yield-per-recruit analysis of ndunduma Diplotaxodon limnothrissa (Teleostei: Cichlidae), in the southeastern arm of Lake Malawi

    Get PDF
    Diplotaxodon limnothrissa Turner (1995) is a widely distributed species occurring throughout Lake Malawi, extending from the surface to a depth of at least 220m. It is probably the most abundant cichlid in the lake with biomass estimates of around 87 000 tonnes in the pelagic zone alone. The species is exploited commercially in the southern part of the lake but since its inception the fishery has never been assessed. As such this study investigates some aspects of age and growth of the species besides applying a yield-per-recruit analysis to assess the status of the fishery. Analysis of sectioned sagittal otoliths revealed that D. limnothrissa is fast growing and relatively long-lived species, attaining ages in excess of 10 years. Growth in length was rapid in immature fish, with fish attaining almost half of their maximum size within their first year. Le ngth-at-age was described by the von Bertalanffy growth model with combined-sex growth described as Lt = 211.21(1-exp(- 0.24(t+1.36))) mm TL. Total, natural and fishing mortalities were estimated at 0.76 yr⁻Âč, 0.31 yr⁻Âč and 0.45 yr⁻Âč respectively. Per-recruit analysis indicated that the D. limnothrissa stock in the southeast arm of the lake is fully exploited as indicated by the current spawner biomass-per-recruit ratios of 31-55% (SB/R)F=0. Modelling indicated that the current age-at-capture (2.67 years) is lower than the age at which yield is optimised (> 5 years) based on the F₀·₁ harvesting strategy. It is, therefore, recommended that the age-at-capture should be increased from 2.67 to 5 years to optimise yield

    Assessment of microbial contamination of groundwater in upper Limphasa River catchment, located in a rural area of northern Malawi

    Get PDF
    In rural Africa, scientific evidence is often lacking to guide the scaling-up of groundwater as the safest source of potable water. An investigation was conducted in the Upper Limphasa Catchment in northern Malawi to determine the safety of groundwater sources and to explore factors influencing water quality. Water samples from 17 boreholes, 6 hand-dug wells and 90 households were analysed for selected parameters. Portable incubators, multi-parameter probe and colorimetric standard methods were used for field measurements, and standard methods were used for laboratory water analysis. Results were compared to specified guidelines of the World Health Organization and Malawi Bureau of Standards to establish the potability of water. Statistical results using non-parametric t-tests indicated that the wells were more contaminated with E. coli bacteria than boreholes (p=6.2x10-6), suggesting non-consideration of local hydrogeologic factors in groundwater development. Water from boreholes that tested negative for pathogens at source tested positive at some households (total coliform: p=0.0042 and E. coli p=7.8x10-7) suggesting the effect of handling practices. Water from wells that was not treated with chlorine showed higher levels of E. coli than treated water from the same sources, confirming the effectiveness of chlorine in reducing pathogenic bacteria in households’ stored drinking-water, reinforcing the scientific basis for scaling up chlorine as effective disinfectant. However, this study demonstrated that chlorine failed to effectively eliminate all pathogens in drinking water. As a case study in tropical rural environments in Africa, these findings on the suitability of using chlorine as disinfectant and on factors explaining groundwater contamination, though provisional, provide a scientific basis for assessing cost-effectiveness and sustainability of scaling-up the use of chlorine as a curative remedy and of systematically investigating local hydrogeologic factors in order to implement measures to protect groundwater quality in poverty-prone rural communities.Web of Scienc

    Assessment of groundwater management for domestic use from IWRM perspective in upper Limphasa river catchment, Malawi

    Get PDF
    Philosophiae Doctor - PhDThe research problem for this study is the limited and unsuccessful implementation of the IWRM concept. This thesis has argued that comprehensive assessment of physical and socioeconomic conditions is essential to provide explanation on factors that limit the successful execution of the IWRM approach. It has further argued that the local IWRM works as proxy for full and successful implementation of the IWRM approach.To contextualise this thesis, the prevailing physical and socioeconomic factors in Malawi in relation to current management and usage of water resources were explained.With 1,321m3 per capita per year against index thresholds of 1,700-1,000m3 per capita per year, this study showed that Malawi is a physically water stressed country but not physically water scarce country although economically it is a water scarce country. This novelty is against some literature that present Malawi as a water abundant country.Again, this study showed that executing a full and successful IWRM in Malawi remains a challenge because of the prevailing socioeconomic situation in terms of water policies,water laws, institutions and management instruments. These aspects have not been reformed and harmonised to facilitate a successful operation of the IWRM approach.The main water-related problem in Malawi is the mismanagement of the available water resources. This is largely due to the lack of implementing management approaches which can generate systematic data for practical assessment of water resources to guide the coordinated procedure among water stakeholders working in catchments. This lack of implementing a coordinated management approach commonly known as integrated water resources management (IWRM) can be attributed to various reasons that includei) lack of comprehensive assessment of factors that can explain lack of successful IWRM implementation at catchment level and ii) lack of methods to demonstrate data generation and analysis on quantity, quality and governance of water that show practical operation of IWRM at community level using groundwater as a showcase among others.This study revealed that introducing local IWRM requires a prior knowledge of the evolution and role of the full IWRM concept in the international water policy which aimed at addressing broader developmental objectives. Globally, the current status of the IWRM concept has potential to address such broader developmental objectives, but sustaining IWRM projects where they have been piloted showed slow progress. Basing on the factors that slow such a progress, local IWRM approach has emerged as a proxy to execute the full IWRM as demonstrated in chapter 8 in this thesis. However, the observed lack of sustainable resources to fund continual functioning of local IWRM activities will defeat its potential solution to water management challenges. The main threat for sustainable local IWRM activities is the tendency of national governments to decentralise roles and responsibilities to local governments and communities without the accompanying financial resources to enable the implementation of the local participation, investments and initiatives at local level. If this tendency could be reversed, the contribution by local IWRM towards solving management problems in the water sector will be enormous. Chapter four has provided the general case-study approach used in this study in terms of research design, data collection methods, data analysis methods, ethical consideration and limitation of the current study within the context of water resource management with a focus on groundwater management.Using geologic map, satellite images, photographs and hydrogeologic conceptual model, the following results emerged: 1) that the Upper Limphasa River catchment has fractured rock aquifer with limited permeability and storage capacity; 2) The topographic nature and north-south strikes of the lineaments explained the north-south flow direction of groundwater in the catchment; 3) The drainage system observed in the Kandoli and Kaning’ina Mountains to the east and west of the Upper Limphasa River catchment respectively (Fig. 5.1; Fig.5.2) formed a groundwater recharge boundary; 4)The regional faults in the same mountains (Fig. 5.1; Fig.5.2) formed structural boundar as well as hydrogeologic boundary which controlled flow direction of the groundwater;5) the hydrogeologic conceptual model showed the existence of the forested weathered bedrock in the upland areas of the entire catchment which formed no-flow boundary and groundwater divide thereby controlling the water flow direction downwards (Fig. 5.9);6) The major agricultural commercial activities existed in Lower Limphasa catchment while only subsistence farming existed in Upper Limphasa catchment. This knowledge and visualization from the map (Fig. 5.3) and conceptual model (Fig.5.9) showed interactions between upland and lowland areas and the role of physical factors in controlling groundwater flow direction in the catchment. It also provided the enlightenment on implications of socioeconomic farming activities on water management. These insights enabled this study to recommend the need for expedited implementation of holistic effective management for sustainable water utilization.Using different physical factors, water scarcity indices and methodologies, this study showed that Malawi is a physically water stressed as well as an economic water scarce country. This novelty is against some literature that present Malawi as a water abundant country. Again, despite the high proportion (85%) of Malawians relying on groundwater resource, groundwater availability (storage in km3) is relatively low (269 km3 in Table 6.10) compared to other countries within SADC and Africa. Given the complexity of groundwater abstraction, the available groundwater for use is further reduced for Malawians who depend on such a resource for their domestic and productive livelihoods. Such insights provided the basis for discussing the need for IWRM.Although daily statistics on groundwater demand (i: 21.20 litres; 116.91 litres;80,550.99 litres), use (ii: 16.8 litres; 92.55 litres; 63,766.95 litres) and abstracted but not used (iii: 4.4; 24.36; 16,784.04 litres) were relatively low per person, per household and per sub-catchment respectively, such statistics when calculated on monthly basis (i.Demand: 636 litres; 3,507.30 litres; 2,416,529.70 litres; ii.Use:504 litres; 2,776.5 litres;1, 913, 008.5 litres iii. Abstracted but not used: 132 litres; 730 litres; 503, 521.2); and on yearly basis (i. Demand: 7,632 litres; 42,087.6 litres; 28,998,356.4 litres; ii. Use: 6,048 litres; 33,318 litres; 22, 956, 102 litres; iii: Abstracted but not used: 1,584 litres; 8,769.6 litres; 6,042,254.4 litres) per person, per household and per sub-catchment provided huge amount of groundwater (Table 6.5). Given the limited storage capacity of fractured rock aquifer in the basement complex geology, the monthly and yearly groundwater demand and use on one hand and abstracted but not used on the other was considered enormous. With the population growth rate of 2.8 for Nkhata Bay (NSO, 2009) and the observed desire to intensify productive livelihoods activities coupled with expected negative effects of climate change, the need to implement IWRM approach for such groundwater resource in the study catchment remains imperative and is urgently needed.In addition to identifying and describing factors that explain the limited groundwater availability in the study catchment, the study developed a methodology for calculating groundwater demand, use and unused at both households and sub-catchment levels.This methodology provided step-by-step procedure for collecting data on groundwater demand and use as a tool that would improve availability of data on groundwater.Implications of such results for IWRM in similar environments were discussed. Despite the time-consuming procedure involved in using the developed methodology, the calculations are simple and interpretation of results is easily understood among various stakeholders. Hence, such an approach is recommended for the IWRM approach which requires stakeholders from various disciplines to interact and collaborate. Nonetheless, this recommends the use of this method as its further refinement is being sought. The analysis on groundwater quality has shown that the dominant water type in the aquifers of Upper Limphasa catchment was Ca-HCO3, suggesting that the study area had shallow, fresh groundwater with recent recharged aquifer. Analyses on physicochemical parameters revealed that none of the sampled boreholes (BHs) and protected shallow dug wells (PSWs) had physical or chemical concentration levels of health concern when such levels were compared with 2008-World Health Organisation(WHO) guidelines and 2005-Malawi Bureau of Standards (MBS). Conversely, although the compliance with 2008-WHO and 2005-MBS of pathogenic bacteria (E.coli) in BHs water was 100% suggesting that water from BHs had low risk and free from bacteriological contamination, water from PSWs showed 0% compliance with 2008-WHO and 2005-MBS values implying high risk to human health. The overall assessment on risk to health classification showed that PSWs were risky sources to supply potable water, hence the need to implement strategies that protect groundwater.On the basis of such findings, the analysis in this study demonstrated the feasibility of using IWRM approach as a platform for implementing environmental and engineering interventions through education programmes to create and raise public awareness on groundwater protection and on the need for collaborative efforts to implement protective measures for their drinking water sources. The use of different analytical methods which were applied to identify the exact sources of the observed contaminants in the PSWs proved futile. Therefore, this study concluded that rolling-out PSWs either as improved or safe sources of drinking water requires further detailed investigations.However, this research recommended using rapid assessment of drinking water-quality (RADWQ) methods for assessing the quality of groundwater sources for drinking. Despite the study area being in the humid climatic region with annual rainfall above 1,000 mm, many of the physical factors were not favourable for availability of more groundwater in the aquifers. Such observation provided compelling evidence in this study to commend the local IWRM as a proxy for the full IWRM implementation for sustainable utilization of such waters. Although institutional arrangements, water laws and water policy were found problematic to facilitate a successful implementation of full IWRM at national level in Malawi, this thesis demonstrated that local institutional arrangements, coordination among institutions, data collection efforts by local community members (active participation), self-regulation among local community committees were favourable conditions for a successful local IWRM in the Upper Limphasa River catchment. This research recommends continuation of such local participation, investment and initiatives as proxy for the full and successful IWRM beyond the study catchment. However, the observed lack of financial resource from central government to facilitates local IWRM activities were seen as counterproductive.In addition, this thesis recommended further studies which should aim at improving some observed negative implications of self-regulations on community members and the limited decentralisation elements from the Department of Water Development.Finally, one of the contributions from this study is the scientific value in using different methods to assess the quality of groundwater as presented in chapter 7. The second value is the demonstration of applying practical techniques to evaluate factors that explain the amount of groundwater storage in the aquifers that can be understood by water scientists, water users, water developers and water managers to implement IWRM collaboratively using groundwater as a showcase. The third contribution is the provision of the procedure to systematically generate data on demand (abstraction) and use of groundwater in unmetered rural areas which has the potential to guide water allocation process in the catchment. Fourthly, the thesis has provided a hydrogeologic conceptual model for the first time for Limphasa River catchment to be used as a visual tool for planning and developing management practices and addressing current water problems.Fifthly, the study has shown how local IWRM works at community level as a proxy for the full implementation of IWRM despite the absence of Catchment Management Agencies. The last contribution is the dissemination of results from this study made through publications and conference presentations as outlined in the appendix

    An analysis of the challenges for groundwater governance during shale gas development in South Africa

    Get PDF
    As a prelude to potential development of South Africa’s shale gas resources, it is critical to develop and implement effective groundwater governance arrangements. Existing policies and plans were analysed to determine whether critical gaps or barriers exist that could potentially lead to impacts on groundwater systems. Ten high-priority governance challenges were identified: (a) defining relevant metrics for baseline groundwater quality and availability; (b) developing guidelines for shale gas resource licensing, exploration, drilling, extraction, production, and completion; (c) defining and enforcing compliance monitoring systems; (d) dealing punitively with non-compliant operators; (e) mitigating and managing risks to prevent impairment of groundwater resources; (f) implementing a goal-based regulatory framework; g) enforcing strict chemical disclosure requirements; (h) coordinating across government departments and regulatory bodies meaningfully and productively; (i) implementing a framework for subsidiarity and support to local water management; and (j) providing an incentive framework that supports strong groundwater management and environmental protection. To overcome these challenges, it is recommended that a decentralised, polycentric, bottom-up approach involving multiple institutions is developed to adaptively manage shale gas development. This transition from the current rigid regulatory structure can foster cooperation and collaboration among key stakeholders. The use of a pro-active groundwater governance structure that can accommodate current, near-term, and long-term shale gas development is important for ensuring that future energy development in South Africa incorporates the influence of other simultaneous stressors such as climate (e.g. drought), landuse changes, population growth, industry, and competing demands for water.Keywords: groundwater, water governance, shale gas, South Afric

    Assessment of concentration levels of contaminants in groundwater of the Soutpansberg region, Limpopo Province, South Africa

    Get PDF
    Groundwater contributions towards improved food security and human health depend on the level of contaminants in groundwater resources. Many people in rural areas use groundwater for drinking purposes without treatment and knowledge of contaminant levels in such waters, owing to parachute research in which research outputs are not shared with communities. This study argues that parachute research exposes groundwater users to health hazards and threatens the food security of communities. Concentration levels of contaminants were measured to ascertain suitability of groundwater for drinking and irrigation purposes. A total of 124 groundwater quality samples from 12 boreholes and 2 springs with physiochemical data from 1995 to 2017 were assessed. This study found high concentration levels of contaminants, such as F, NO3 , Cl, and total dissolved solids, in certain parts of the studied area. In general, groundwater was deemed suitable for drinking purposes in most parts of the studied area

    Characterisation of hydro-geochemical processes influencing groundwater quality in rural areas: A case study of Soutpansberg region, Limpopo Province, South Africa

    Get PDF
    Groundwater is often the main or only source of fresh water supply in arid to semi-arid rural areas owing to decreasing rainfall patterns, reduced availability of surface water and socioeconomic activities. It is important to understand the hydro-geochemical processes influencing groundwater quality for improved management and sustainability of resources and to improve rural livelihoods. To understand the hydro-geochemical process influencing the hydro-geochemistry of the Soutpansberg region, this study assessed groundwater quality data from 12 boreholes and 2 geothermal springs collected between 1995 and 2017

    Analysis of the fragmented legal regime pertaining to rehabilitation measures for wetlands: A South African perspective – part 1

    Get PDF
    Wetlands are disappearing and it is an international dilemma. Many efforts have been made to ensure its protection and conservation, including rehabilitation. Rehabilitation measures have been adopted in policies of various jurisdictions. In South Africa, the wetlands legislative framework is fragmented. It was submitted that a wetlands policy is in the pipeline for South Africa. As opposed to the research on the general protection of this resources, Part 1 of this research aimed, by way of a documentary analysis of the legislative wetland framework, journal articles, books and case law, to provide what the extent of the fragmentation, specifically, rehabilitation measures were, as well as the effect thereof. Part 2 of this research explicitly focused on rehabilitation measures taken by three other jurisdictions, as well as a design for such in South Africa’s envisaged policy

    Policy implementation for water resources protection: Assessing spatio-temporal trends of results from process-based outcomes of resource-directed measures projects in South Africa

    Get PDF
    Governments are continuously developing strategies for policy implementation toward water resource protection. However, little is known about the practical application of such plans to test their effectiveness in policy practice. This study focused on resource-directed measures (RDMs) in South Africa to assess progress made on policy implementation for water resource protection. The study included document surveys and content analysis of the publicly available reports and documents sourced from state departments and government websites. The findings of the study indicated that water resource-directed measures are used as policy implementation strategies for water resource protection in the country. Furthermore, the study revealed that significant progress has been made in this regard, when a multi-sectorial policy implementation practice approach through public-private partnerships ensured that 69% of the catchments have process-based RDM projects completed, while 18% are in progress, and only 13% are outstanding

    Assessing the role of water resources protection practice for sustainable water resources management: A review

    Get PDF
    Water resource protection is central to sustainable water supply management for human wellbeing and for the ecological ecosystem to flourish. This review paper focuses on highlighting the role of groundwater and surface water protection practice to improve their sustainable utilization in South Africa. Using an integrative approach, this paper initially reflects on the history of water resources utilization, and it examines what is understood by the term “water resources protection”. This review paper then continues by providing an analysis of the current practice at global and local levels. The study found evidence of water resource utilization in the ancient times with limited challenges despite unavailability of regulation mechanisms. However, in recent times water resource availability challenges linked to water availability and water quality deterioration are evident globally despite having policies and regulation in place

    Scenarios analysis using water-sensitive urban design principles: A case study of the Cape Flats Aquifer in South Africa

    Get PDF
    A feasibility assessment was undertaken on the application ofwater-sensitive urban design (WSUD) for the Cape Flats Aquifer in Cape Town, South Africa, at the local scale. The study contributes towards the planning of water-sensitive cities in the future. A three-dimensional steady-state groundwater flow model was applied to the Cape Flats Aquifer to predict WSUD scenarios by incorporating managed aquifer recharge (MAR). Analysis of the scenarios of varying recharge estimates and groundwater abstraction rates, predicted using the model, indicated that the water-table distribution and outflows from identified groundwater balance components show direct proportionality to the varying recharge scenarios. A notable increase in these outflows was observed when the recharge rate was increased by 50%. Varying groundwater abstraction scenarios indicated that with increasing abstraction rates, water levels and outflows fromgroundwater balance components also decreased accordingly. A notable decline in water levels and outflows was established at an abstraction rate of 2.5 and 5 L/s, respectively. Similar to the previous regional studies in the area, the results from the predicted scenarios show that there is a potential for applying WSUD, particularly MAR, at site-specific scale within the Cape Flats Aquifer. However, shallow groundwater levels during wet seasons limit the opportunities for application of WSUD in the area. This finding would provide an important reference to the ongoing debate on the Cape Town water crisis and similar environmental conditions where WSUD is considered
    • 

    corecore