23 research outputs found

    Fat and Carbohydrate Interact to Potentiate Food Reward in Healthy Weight but Not in Overweight or Obesity

    Get PDF
    Prior work suggests that actual, but not estimated, energy density drives the reinforcing value of food and that energy from fat and carbohydrate can interact to potentiate reward. Here we sought to replicate these findings in an American sample and to determine if the effects are influenced by body mass index (BMI). Thirty participants with healthy weight (HW; BMI 21.92 ± 1.77; M ± SD) and 30 participants with overweight/obesity (OW/OB; BMI 29.42 ± 4.44) rated pictures of common American snacks in 120-kcal portions for liking, familiarity, frequency of consumption, expected satiety, healthiness, energy content, energy density, and price. Participants then completed an auction task where they bid for the opportunity to consume each food. Snacks contained either primarily carbohydrate, primarily fat, or roughly equal portions of fat and carbohydrate (combo). Replicating prior work, we found that participants with HW bid the most for combo foods in linear mixed model analyses. This effect was not observed among individuals with OW/OB. Additionally, in contrast with previous reports, our linear regression analyses revealed a negative relationship between the actual energy density of the snacks and bid amount that was mediated by food price. Our findings support altered macronutrient reinforcement in obesity and highlight potential influences of the food environment on the regulation of food reward

    Using self-organizing maps to investigate environmental factors regulating colony size and breeding success of the White Stork (Ciconia ciconia)

    Get PDF
    We studied variations in the size of breeding colonies and in breeding performance of White Storks Ciconia ciconia in 2006–2008 in north-east Algeria. Each colony site was characterized using 12 environmental variables describing the physical environment, land-cover categories, and human activities, and by three demographic parameters: the number of breeding pairs, the number of pairs with chicks, and the number of fledged chicks per pair. Generalized linear mixed models and the self-organizing map algorithm (SOM, neural network) were used to investigate effects of biotic, abiotic, and anthropogenic factors on demographic parameters and on their relationships. Numbers of breeding pairs and of pairs with chicks were affected by the same environmental factors, mainly anthropogenic, which differed from those affecting the number of fledged chicks per pair. Numbers of fledged chicks per pair was not affected by colony size or by the number of nests with chicks. The categorization of the environmental variables into natural and anthropogenic, in connection with demographic parameters, was relevant to detect factors explaining variation in colony size and breeding parameters. The SOM proved a relevant tool to help determine actual dynamics in White Stork colonies, and thus to support effective conservation decisions at a regional scale

    No evidence for an association between obesity and milkshake liking

    No full text
    Background Prevailing models of obesity posit that hedonic signals override homeostatic mechanisms to promote overeating in today’s food environment. What researchers mean by “hedonic” varies considerably, but most frequently refers to an aggregate of appetitive events including incentive salience, motivation, reinforcement, and perceived pleasantness. Here we define hedonic as orosensory pleasure experienced during eating and set out to test whether there is a relationship between adiposity and the perceived pleasure of a palatable and energy-dense milkshake. Methods The perceived liking, wanting, and intensity of two palatable and energy-dense milkshakes were assessed using the Labeled Hedonic Scale (1), visual analog scale (VAS), and Generalized Labeled Magnitude Scale (2) in 110 individuals ranging in body mass index (BMI) from 19.3 to 52.1 kg/m2. Waist circumference, waist–hip ratio, and percent body fat were also measured. Importantly, unlike the majority of prior studies, we attempted to standardize internal state by instructing participants to arrive to the laboratory neither hungry nor full and at least 1-h fasted. Data were analyzed with general linear and linear mixed effects models (GLMs). Hunger ratings were also examined prior to hedonic measurement and included as covariates in our analyses. Results We identified a significant association between ratings of hunger and milkshake liking and wanting. By contrast, we found no evidence for a relationship between any measure of adiposity and ratings of milkshake liking, wanting, or intensity. Conclusions We conclude that adiposity is not associated with the pleasure experienced during consumption of our energy-dense and palatable milkshakes. Our results provide further evidence against the hypothesis that heightened hedonic signals drive weight gain

    The efficient integration of abundance and demographic data

    No full text
    A drawback of a new method for integrating abundance and mark-recapture-recovery data is the need to combine likelihoods describing the different data sets. Often these likelihoods will be formed by using specialist computer programs, which is an obstacle to the joint analysis. This difficulty is easily circumvented by the use of a multivariate normal approximation. We show that it is only necessary to make the approximation for the parameters of interest in the joint analysis. The approximation is evaluated on data sets for two bird species and is shown to be efficient and accurate

    Development of MacroPics: A novel food picture set to dissociate the effects of carbohydrate and fat on eating behaviors

    No full text
    Emerging evidence suggests that fat and carbohydrate interact to potentiate the reward value of food (DiFeliceantonio et al., 2018). The primary goal of the current study was to develop a novel picture set to facilitate research into the effects of macronutrient composition on food choice and eating behavior. Toward this aim, we developed “MacroPics.” In Experiment 1, we photographed 120-kcal portions of 60 snack foods falling into one of the three macronutrient categories: (1) mostly carbohydrate, (2) mostly fat, or (3) a combination of fat and carbohydrate. Sixty-one participants rated the images for liking, familiarity, frequency of consumption, healthiness, estimated energy content (in kcal), and expected satiation. A subset of these images consisting of 36 items was then selected in an iterative process to minimize differences in ratings between the macronutrient categories while simultaneously ensuring similar within-category variability on a number of food characteristics (e.g., energy density, portion size, retail price) and visual properties (e.g., color, complexity, visual area). In Experiment 2, an independent sample of 67 participants rated the pictures of the final 36-item MacroPics. Both experiments reveal similar participant ratings across categories for item liking, familiarity, frequency, healthiness, and estimated energy content. Protein content was higher in the fat compared to the carbohydrate and combination categories, leading to higher ratings of estimated satiety and energy density for fatty foods. Item and macronutrient category characteristics of the final MacroPics set are reported
    corecore