24 research outputs found
Geometric control of bacterial surface accumulation
Controlling and suppressing bacterial accumulation at solid surfaces is
essential for preventing biofilm formation and biofouling. Whereas various
chemical surface treatments are known to reduce cell accumulation and
attachment, the role of complex surface geometries remains less well
understood. Here, we report experiments and simulations that explore the
effects of locally varying boundary curvature on the scattering and
accumulation dynamics of swimming Escherichia coli bacteria in
quasi-two-dimensional microfluidic channels. Our experimental and numerical
results show that a concave periodic boundary geometry can decrease the average
cell concentration at the boundary by more than 50% relative to a flat surface.Comment: 10 pages, 5 figure
Ciliary contact interactions dominate surface scattering of swimming eukaryotes
Interactions between swimming cells and surfaces are essential to many
microbiological processes, from bacterial biofilm formation to human
fertilization. However, in spite of their fundamental importance, relatively
little is known about the physical mechanisms that govern the scattering of
flagellated or ciliated cells from solid surfaces. A more detailed
understanding of these interactions promises not only new biological insights
into structure and dynamics of flagella and cilia, but may also lead to new
microfluidic techniques for controlling cell motility and microbial locomotion,
with potential applications ranging from diagnostic tools to therapeutic
protein synthesis and photosynthetic biofuel production. Due to fundamental
differences in physiology and swimming strategies, it is an open question
whether microfluidic transport and rectification schemes that have recently
been demonstrated for pusher-type microswimmers such as bacteria and sperm
cells, can be transferred to puller-type algae and other motile eukaryotes, as
it is not known whether long-range hydrodynamic or short-range mechanical
forces dominate the surface interactions of these microorganisms. Here, using
high-speed microscopic imaging, we present direct experimental evidence that
the surface scattering of both mammalian sperm cells and unicellular green
algae is primarily governed by direct ciliary contact interactions. Building on
this insight, we predict and verify experimentally the existence of optimal
microfluidic ratchets that maximize rectification of initially uniform
Chlamydomonas reinhardtii suspensions. Since mechano-elastic properties of
cilia are conserved across eukaryotic species, we expect that our results apply
to a wide range of swimming microorganisms.Comment: Preprint as accepted for publication in PNAS, for published journal
version (open access) and Supporting Information see
http://dx.doi.org/10.1073/pnas.121054811
Entrainment dominates the interaction of microalgae with micron-sized objects
The incessant activity of swimming microorganisms has a direct physical effect on surrounding microscopic objects, leading to enhanced diffusion far beyond the level of Brownian motion with possible influences on the spatial distribution of non-motile planktonic species and particulate drifters. Here we study in detail the effect of eukaryotic flagellates, represented by the green microalga Chlamydomonas reinhardtii, on microparticles. Macro- and micro-scopic experiments reveal that microorganism--colloid interactions are dominated by rare close encounters leading to large displacements through direct entrainment. Simulations and theoretical modelling show that the ensuing particle dynamics can be understood in terms of a simple jump-diffusion process, combining standard diffusion with Poisson-distributed jumps. This heterogeneous dynamics is likely to depend on generic features of the near-field of swimming microorganisms with front-mounted flagella
Fluid Velocity Fluctuations in a Suspension of Swimming Protists
In dilute suspensions of swimming microorganisms the local fluid velocity is
a random superposition of the flow fields set up by the individual organisms,
which in turn have multipole contributions decaying as inverse powers of
distance from the organism. Here we show that the conditions under which the
central limit theorem guarantees a Gaussian probability distribution function
of velocities are satisfied when the leading force singularity is a Stokeslet,
but are not when it is any higher multipole. These results are confirmed by
numerical studies and by experiments on suspensions of the alga Volvox carteri,
which show that deviations from Gaussianity arise from near-field effects.Comment: 4 pages, 3 figure
Bimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells
Successful sperm navigation is essential for sexual reproduction, yet we still understand relatively little about how sperm cells are able to adapt their swimming motion in response to chemical and physical cues. This lack of knowledge is owed to the fact that it has been difficult to observe directly the full 3D dynamics of the whip-like flagellum that propels the cell through the fluid. To overcome this deficiency, we apply a new algorithm to reconstruct the 3D beat patterns of human sperm cells in experiments under varying flow conditions. Our analysis reveals that the swimming strokes of human sperm are considerably more complex than previously thought, and that sperm may use their heads as rudders to turn right or left.Swiss National Science Foundation (Grant 148743)Solomon Buchsbaum AT&T Research Fun
Microalgae scatter off solid surfaces by hydrodynamic and contact forces
Interactions between microorganisms and solid boundaries play an important role in biological processes, such as egg fertilization, biofilm formation, and soil colonization, where microswimmers move within a structured environment. Despite recent efforts to understand their origin, it is not clear whether these interactions can be understood as being fundamentally of hydrodynamic origin or hinging on the swimmer’s direct contact with the obstacle. Using a combination of experiments and simulations, here we study in detail the interaction of the biflagellate green alga Chlamydomonas reinhardtii, widely used as a model puller microorganism, with convex obstacles, a geometry ideally suited to highlight the different roles of steric and hydrodynamic effects. Our results reveal that both kinds of forces are crucial for the correct description of the interaction of this class of flagellated microorganisms with boundaries
Microalgae Scatter off Solid Surfaces by Hydrodynamic and Contact Forces
Interactions between microorganisms and solid boundaries play an important role in biological processes, such as egg fertilization, biofilm formation, and soil colonization, where microswimmers move within a structured environment. Despite recent efforts to understand their origin, it is not clear whether these interactions can be understood as being fundamentally of hydrodynamic origin or hinging on the swimmer's direct contact with the obstacle. Using a combination of experiments and simulations, here we study in detail the interaction of the biflagellate green alga Chlamydomonas reinhardtii, widely used as a model puller microorganism, with convex obstacles, a geometry ideally suited to highlight the different roles of steric and hydrodynamic effects. Our results reveal that both kinds of forces are crucial for the correct description of the interaction of this class of flagellated microorganisms with boundaries.We acknowledge the support of a Ph.D. studentship from the Engineering and Physical Sciences Research Council (MC), the Spanish Ministry of Economy and Competitiveness Grant No. FIS2013-48444-C2-1-P, and the subprogram Ramón y Cajal (IT)Peer Reviewe
The effect of flow on swimming bacteria controls the initial colonization of curved surfaces
The colonization of surfaces by bacteria is a widespread phenomenon with consequences on environmental processes and human health. While much is known about the molecular mechanisms of surface colonization, the influence of the physical environment remains poorly understood. Here we show that the colonization of non-planar surfaces by motile bacteria is largely controlled by flow. Using microfluidic experiments with Pseudomonas aeruginosa and Escherichia coli, we demonstrate that the velocity gradients created by a curved surface drive preferential attachment to specific regions of the collecting surface, namely the leeward side of cylinders and immediately downstream of apexes on corrugated surfaces, in stark contrast to where nonmotile cells attach. Attachment location and rate depend on the local hydrodynamics and, as revealed by a mathematical model benchmarked on the observations, on cell morphology and swimming traits. These results highlight the importance of flow on the magnitude and location of bacterial colonization of surfaces.Fil: Secchi, Eleonora. Eidgenössische Technische Hochschule Zurich. Institute of Environmental Engineering; SuizaFil: Vitale, Alessandra. Universitat Zurich; SuizaFil: Miño, Gastón Leonardo. Universidad Nacional de Entre RÃos. Facultad de IngenierÃa. Laboratorio de MicroscopÃa Aplicada a Estudios Moleculares y Celulares; Argentina. Universidad Nacional de Entre RÃos. Instituto de Investigación y Desarrollo en BioingenierÃa y Bioinformática - Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en BioingenierÃa y Bioinformática; ArgentinaFil: Kantsler, Vasily. University of Warwick; Reino UnidoFil: Eberl, Leo. Universitat Zurich; SuizaFil: Rusconi, Roberto. Humanitas University. Department of Biomedical Sciences; Italia. Humanitas Clinical and Research Center; ItaliaFil: Stocker, Roman. Eidgenössische Technische Hochschule Zurich. Institute of Environmental Engineering; Suiz