3,069 research outputs found
Ferrogels cross-linked by magnetic particles: Field-driven deformation and elasticity studied using computer simulations
Ferrogels, i.e. swollen polymer networks into which magnetic particles are
immersed, can be considered as "smart materials" since their shape and
elasticity can be controlled by an external magnetic field. Using molecular
dynamics simulations on the coarse-grained level we study a ferrogel in which
the magnetic particles act as the cross-linkers of the polymer network. In a
homogeneous external magnetic field the direct coupling between the orientation
of the magnetic moments and the polymers by means of covalent bonds gives rise
to a deformation of the gel, independent of the interparticle dipole-dipole
interaction. In this paper we report quantitative measurements of this
deformation, the gel's elastic moduli and its magnetic response. Our results
demonstrate that these properties depend significantly on the topology of the
polymer network
Modelling a Bistable System Strongly Coupled to a Debye Bath: A Quasiclassical Approach Based on the Generalised Langevin Equation
Bistable systems present two degenerate metastable configurations separated
by an energy barrier. Thermal or quantum fluctuations can promote the
transition between the configurations at a rate which depends on the dynamical
properties of the local environment (i.e., a thermal bath). In the case of
classical systems, strong system-bath interaction has been successfully
modelled by the Generalised Langevin Equation (GLE) formalism. Here we show
that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014)
can be extended to include some crucial aspects of the quantum fluctuations. In
particular, the expected isotopic effect is observed along with the convergence
of the quantum and classical transition rates in the strong coupling limit.
Saturation of the transition rates at low temperature is also retrieved, in
qualitative, yet not quantitative, agreement with the analytic predictions. The
discrepancies in the tunnelling regime are due to an incorrect sampling close
to the barrier top. The domain of applicability of the quasiclassical GLE is
also discussed.Comment: 21 pages, 5 figures. Presented at the NESC16 conference: Advances in
  theory and simulation of non-equilibrium system
Structure and spectroscopy of surface defects from scanning force spectroscopy: theoetical predictions
A possibility to study surface defects by combining noncontact scanning force microscopy (SFM) imaging with atomically resolved optical spectroscopy is demonstrated by modeling an impurity Cr3+ ion at the MgO(001) surface with a SFM tip. Using a combination of the atomistic simulation and the ab initio electronic structure calculations, we predict a topographic noncontact SFM image of the defect and show that its optical transitions can be either enhanced or suppressed depending on the tip atomistic structure and its position relative to the defect. These effects should allow identification of certain impurity species through competition between radiative and nonradiative transitions
Electrostatic energy calculation for the interpretation of scanning probe microscopy experiments
We discuss the correct expression for the classical electrostatic energy used while analysing scanning probe microscopy (SPM) experiments if either a conducting tip or a substrate or both are used in the experiment. For this purpose a general system consisting of an arbitrary arrangement of finite metallic conductors at fixed potentials (maintained by external sources) and a distribution of point charges in free space are considered using classical electrostatics. We stress the crucial importance of incorporating into the energy the contribution coming from the external sources (the `battery'). Using the Green function of the Laplace equation, we show in a very general case that the potential energy of point charges which are far away from metals is equally shared by their direct interaction and the polarization interaction due to charge induced in metals by the remote charges (the image interaction). When the charges are located close to the metals, there is an additional negative term in the energy entirely due to image interaction. The exact Hamiltonian of a quantum system interacting classically with polarized metal conductors is derived and its application in the Hartree-Fock and the density functional theories is briefly discussed. As an illustration of the theory, we consider an interaction of several point charges with a metal plane and a spherical tip, based on the set-up of a real SPM experiment. We show the significance of the image interaction for the force imposed on the tip
Studying synthesis confinement effects on the internal structure of nanogels in computer simulations
We study the effects of droplet finite size on the structure of nanogel
particles synthesized by random crosslinking of molecular polymers diluted in
nanoemulsions. For this, we use a bead-spring computer model of polymer-like
structures that mimics the confined random crosslinking process corresponding
to irradiation- or electrochemically-induced crosslinking methods. Our results
indicate that random crosslinking under strong confinement can lead to unusual
nanogel internal structures, with a central region less dense than the external
one, whereas under moderate confinement the resulting structure has a denser
central region. We analyze the topology of the polymer networks forming nanogel
particles with both types of architectures, their overall structural
parameters, their response to the quality of the solvent and compare the cases
of non-ionic and ionic systems
The generalized identification of truly interfacial molecules (ITIM) algorithm for nonplanar interfaces
We present a generalized version of the ITIM algorithm for the identification of interfacial molecules, which is able to treat arbitrarily shaped interfaces. The algorithm exploits the similarities between the concept of probe sphere used in ITIM and the circumsphere criterion used in the α-shapes approach, and can be regarded either as a reference-frame independent version of the former, or as an extended version of the latter that includes the atomic excluded volume. The new algorithm is applied to compute the intrinsic orientational order parameters of water around a dodecylphosphocholine and a cholic acid micelle in aqueous environment, and to the identification of solvent-reachable sites in four model structures for soot. The additional algorithm introduced for the calculation of intrinsic density profiles in arbitrary geometries proved to be extremely useful also for planar interfaces, as it allows to solve the paradox of smeared intrinsic profiles far from the interface. © 2013 American Institute of Physics
- …
