293 research outputs found

    Sydnone Cycloaddition Route to Pyrazole-Based Analogs of Combretastatin A4.

    Get PDF
    The combretastatins are an important class of tubulin-binding agents. Of this family, a number of compounds are potent tumor Vascular Disrupting Agents (VDAs) and have shown promise in the clinic for cancer therapy. We have developed a modular synthetic route to combretastatin analogs based on a pyrazole core through highly-regioselective alkyne cycloaddition reactions of sydnones. These compounds show modest to high potency against human umbilical vein endothelial cell proliferation. Moreover, evidence is presented that these novel VDAs have the same mode of action as CA4P and bind reversibly to Ξ²-tubulin - believed to be a key feature in avoiding toxicity. The most active compound from in vitro studies was taken forward to an in vivo model and instigated an increase in tumor cell necrosis

    Measuring cellular migration with image processing

    Get PDF
    An image-processing algorithm for the analysis of migration of vascular endothelial cells in culture is presented. The algorithm correctly detected the cellular regions on either side of an artificial β€˜wound’ made by dragging a sterile pipette tip across the monolayer of cells (scratch wound assay). Frequency filtering and mathematical morphology were used to approximate the boundaries of cellular regions. This allowed the measurement of the distance between the regions, and therefore the migration rates, regardless of the orientation of the wound and even in cases where the cells were sparse and not tightly packed

    The influence of hypoxia and energy depletion on the response of endothelial cells to the vascular disrupting agent combretastatin A-4-phosphate

    Get PDF
    Combretastatin A-4 phosphate (CA4P) is a microtubule-disrupting tumour-selective vascular disrupting agent (VDA). CA4P activates the actin-regulating RhoA-GTPase/ ROCK pathway, which is required for full vascular disruption. While hypoxia renders tumours resistant to many conventional therapies, little is known about its influence on VDA activity. Here, we found that active RhoA and ROCK effector phospho-myosin light chain (pMLC) were downregulated in endothelial cells by severe hypoxia. CA4P failed to activate RhoA/ROCK/pMLC but its activity was restored upon reoxygenation. Hypoxia also inhibited CA4P-mediated actinomyosin contractility, VE-cadherin junction disruption and permeability rise. Glucose withdrawal downregulated pMLC, and coupled with hypoxia, reduced pMLC faster and more profoundly than hypoxia alone. Concurrent inhibition of glycolysis (2-deoxy-D-glucose, 2DG) and mitochondrial respiration (rotenone) caused profound actin filament loss, blocked RhoA/ROCK signalling and rendered microtubules CA4P-resistant. Withdrawal of the metabolism inhibitors restored the cytoskeleton and CA4P activity. The AMP-activated kinase AMPK was investigated as a potential mediator of pMLC downregulation. Pharmacological AMPK activators that generate AMP, unlike allosteric activators, downregulated pMLC but only when combined with 2DG and/or rotenone. Altogether, our results suggest that Rho/ROCK and actinomyosin contractility are regulated by AMP/ATP levels independently of AMPK, and point to hypoxia/energy depletion as potential modifiers of CA4P response

    Do Anti-Angiogenic VEGF (VEGFxxxb) Isoforms Exist? A Cautionary Tale

    Get PDF
    Splicing of the human vascular endothelial growth factor-A (VEGF-A) gene has been reported to generate angiogenic (VEGFxxx) and anti-angiogenic (VEGFxxxb) isoforms. Corresponding VEGFxxxb isoforms have also been reported in rat and mouse. We examined VEGFxxxb expression in mouse fibrosarcoma cell lines expressing all or individual VEGF isoforms (VEGF120, 164 or 188), grown in vitro and in vivo, and compared results with those from normal mouse and human tissues. Importantly, genetic construction of VEGF164 and VEGF188 expressing fibrosarcomas, in which exon 7 is fused to the conventional exon 8, precludes VEGFxxxb splicing from occurring. Thus, these two fibrosarcoma cell lines provided endogenous negative controls. Using RT-PCR we show that primers designed to simultaneously amplify VEGFxxx and VEGFxxxb isoforms amplified only VEGFxxx variants in both species. Moreover, only VEGFxxx species were generated when mouse podocytes were treated with TGFΞ²-1, a reported activator of VEGFxxxb splice selection in human podocytes. A VEGF164/120 heteroduplex species was identified as a PCR artefact, specifically in mouse. VEGFxxxb isoform-specific PCR did amplify putative VEGFxxxb species in mouse and human tissues, but unexpectedly also in VEGF188 and VEGF164 fibrosarcoma cells and tumours, where splicing to produce true VEGFxxxb isoforms cannot occur. Moreover, these products were only consistently generated using reverse primers spanning more than 5 bases across the 8b/7 or 8b/5 splice junctions. Primer annealing to VEGFxxx transcripts and amplification of exon 8b primer β€˜tails’ explained the artefactual generation of VEGFxxxb products, since the same products were generated when the PCR reactions were performed with cDNA from VEGF164/VEGF188 β€˜knock-in’ vectors used in the generation of single VEGF isoform-expressing transgenic mice from which the fibrosarcoma lines were developed. Collectively, our results highlight important pitfalls in data interpretation associated with detecting VEGFxxxb isoforms using current methods, and demonstrate that anti-angiogenic isoforms are not commonly expressed in mouse or human tissues
    • …
    corecore