758 research outputs found

    Predicting the fatigue life of polycarbonate

    Get PDF
    In this study a constitutive modelling approach is used to predict the fatigue life of polycarbonate. After a thorough investigation on the heating effects, accurate lifetime predictions are made under isothermal as well as non-isothermal conditions. Moreover, it is shown that cyclic fatigue has an accelerated effect on the ageing behaviour

    Cluster Dynamics for Randomly Frustrated Systems with Finite Connectivity

    Full text link
    In simulations of some infinite range spin glass systems with finite connectivity, it is found that for any resonable computational time, the saturatedenergy per spin that is achieved by a cluster algorithm is lowered in comparison to that achieved by Metropolis dynamics.The gap between the average energies obtained from these two dynamics is robust with respect to variations of the annealing schedule. For some probability distribution of the interactions the ground state energy is calculated analytically within the replica symmetry assumptionand is found to be saturated by a cluster algorithm.Comment: Revtex, 4 pages with 3 figure

    Metastable configurations of spin models on random graphs

    Full text link
    One-flip stable configurations of an Ising-model on a random graph with fluctuating connectivity are examined. In order to perform the quenched average of the number of stable configurations we introduce a global order-parameter function with two arguments. The analytical results are compared with numerical simulations.Comment: 11 pages Revtex, minor changes, to appear in Phys. Rev.

    Statistical properties of genealogical trees

    Get PDF
    We analyse the statistical properties of genealogical trees in a neutral model of a closed population with sexual reproduction and non-overlapping generations. By reconstructing the genealogy of an individual from the population evolution, we measure the distribution of ancestors appearing more than once in a given tree. After a transient time, the probability of repetition follows, up to a rescaling, a stationary distribution which we calculate both numerically and analytically. This distribution exhibits a universal shape with a non-trivial power law which can be understood by an exact, though simple, renormalization calculation. Some real data on human genealogy illustrate the problem, which is relevant to the study of the real degree of diversity in closed interbreeding communities.Comment: Accepted for publication in Phys. Rev. Let

    Survey propagation for the cascading Sourlas code

    Full text link
    We investigate how insights from statistical physics, namely survey propagation, can improve decoding of a particular class of sparse error correcting codes. We show that a recently proposed algorithm, time averaged belief propagation, is in fact intimately linked to a specific survey propagation for which Parisi's replica symmetry breaking parameter is set to zero, and that the latter is always superior to belief propagation in the high connectivity limit. We briefly look at further improvements available by going to the second level of replica symmetry breaking.Comment: 14 pages, 5 figure

    Numerical Results for Ground States of Mean-Field Spin Glasses at low Connectivities

    Full text link
    An extensive list of results for the ground state properties of spin glasses on random graphs is presented. These results provide a timely benchmark for currently developing theoretical techniques based on replica symmetry breaking that are being tested on mean-field models at low connectivity. Comparison with existing replica results for such models verifies the strength of those techniques. Yet, we find that spin glasses on fixed-connectivity graphs (Bethe lattices) exhibit a richer phenomenology than has been anticipated by theory. Our data prove to be sufficiently accurate to speculate about some exact results.Comment: 4 pages, RevTex4, 5 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    Exact solutions for diluted spin glasses and optimization problems

    Full text link
    We study the low temperature properties of p-spin glass models with finite connectivity and of some optimization problems. Using a one-step functional replica symmetry breaking Ansatz we can solve exactly the saddle-point equations for graphs with uniform connectivity. The resulting ground state energy is in perfect agreement with numerical simulations. For fluctuating connectivity graphs, the same Ansatz can be used in a variational way: For p-spin models (known as p-XOR-SAT in computer science) it provides the exact configurational entropy together with the dynamical and static critical connectivities (for p=3, \gamma_d=0.818 and \gamma_s=0.918 resp.), whereas for hard optimization problems like 3-SAT or Bicoloring it provides new upper bounds for their critical thresholds (\gamma_c^{var}=4.396 and \gamma_c^{var}=2.149 resp.).Comment: 4 pages, 1 figure, accepted for publication in PR
    • …
    corecore