6 research outputs found

    Extraction of fruit and berry raw materials for the production of beer for special purpose

    Get PDF
    Currently, the expаnsion of the rаnge of the brewing industry is possible due to the introduction of аn unconventionаl type of plаnt rаw mаteriаls in the technology, which will аllow producing speciаl -purpose drinks with certаin quаlity indicаtors. The main objective of the study is to determine the concentration of the extractant that allows extracting the maximum number of target components, optimal extraction parameters, and to evaluate the effect of pretreatment with enzyme preparations on the properties of fruit and berry raw materials. Studies have shown that solutions with an alcohol concentration of 60% vol. allow to increase the yield of alcohol and water-soluble substances. However, in order to obtain dyes from fruit and berry raw materials, it is recommended to use an extractant with a strength of 75 %, which extracts anthocyanin compounds to a greater extent

    New collective structures in 179Au^179Au and their implications for the triaxial deformation of the 178Pt^178Pt core

    Get PDF
    The extremely neutron-deficient isotope Au179 has been studied by a combination of in-beam γ-ray and isomeric-decay spectroscopy. For in-beam spectroscopy, the recoil-isomer tagging technique was employed, using the known 3/2-, T1/2=328 ns isomer. A new rotational band, associated with the unfavored signature band of the 1h9/2?2f7/2 proton-intruder configuration, was revealed. A previously unknown, high-spin isomeric state with an excitation energy of 1743(17) keV and T1/2=2.16(8)μs was discovered. Five decay paths were identified, some of them feeding previously unknown non-yrast excited states, associated with the 1i13/2 proton-intruder configuration. Calculations based on the particle-plus-triaxial-rotor model were performed to interpret the data. On the basis of these calculations, the new 1h9/2?2f7/2 rotational band is interpreted as due to triaxial deformation of the underlying configuration with β2≈0.26 and γ≈27?. Observed non-yrast states of the positive-parity 1i13/2 intruder configuration are interpreted as due to triaxial deformation with β2≈0.26 and γ≈20?

    New collective structures in 179Au and their implications for the triaxial deformation of the 178Pt core

    No full text
    The extremely neutron-deficient isotope 179Au has been studied by a combination of in-beam γ-ray and isomeric-decay spectroscopy. For in-beam spectroscopy, the recoil-isomer tagging technique was employed, using the known 3/2−, T1/2=328 ns isomer. A new rotational band, associated with the unfavored signature band of the 1h9/2⊕2f7/2 proton-intruder configuration, was revealed. A previously unknown, high-spin isomeric state with an excitation energy of 1743(17) keV and T1/2=2.16(8)µs was discovered. Five decay paths were identified, some of them feeding previously unknown non-yrast excited states, associated with the 1i13/2 proton-intruder configuration. Calculations based on the particle-plus-triaxial-rotor model were performed to interpret the data. On the basis of these calculations, the new 1h9/2⊕2f7/2 rotational band is interpreted as due to triaxial deformation of the underlying configuration with β2≈0.26 and γ≈27∘. Observed non-yrast states of the positive-parity 1i13/2 intruder configuration are interpreted as due to triaxial deformation with β2≈0.26 and γ≈20∘.peerReviewe
    corecore