76 research outputs found

    Improvements in Compassion and Fears of Compassion throughout the COVID-19 Pandemic: A Multinational Study

    Get PDF
    During large-scale disasters, social support, caring behaviours, and compassion are shown to protect against poor mental health outcomes. This multi-national study aimed to assess the fluctuations in compassion over time during the COVID-19 pandemic. Respondents (Time 1 n = 4156, Time 2 n = 980, Time 3 n = 825) from 23 countries completed online self-report questionnaires measuring the flows of compassion (i.e., Compassionate Engagement and Action Scales) and fears of compassion toward self and others and from others (i.e., Fears of Compassion Scales) and mental health at three time-points during a 10-month period. The results for the flows of compassion showed that self-compassion increased at Time 3. Compassion for others increased at Time 2 and 3 for the general population, but in contrast, it decreased in health professionals, possibly linked to burnout. Compassion from others did not change in Time 2, but it did increase significantly in Time 3. For fears of compassion, fears of self-compassion reduced over time, fears of compassion for others showed more variation, reducing for the general public but increasing for health professionals, whilst fears of compassion from others did not change over time. Health professionals, those with compassion training, older adults, and women showed greater flows of compassion and lower fears of compassion compared with the general population, those without compassion training, younger adults, and men. These findings highlight that, in a period of shared suffering, people from multiple countries and nationalities show a cumulative improvement in compassion and reduction in fears of compassion, suggesting that, when there is intense suffering, people become more compassionate to self and others and less afraid of, and resistant to, compassion

    mRNA Display Selection of an Optimized MDM2-Binding Peptide That Potently Inhibits MDM2-p53 Interaction

    Get PDF
    p53 is a tumor suppressor protein that prevents tumorigenesis through cell cycle arrest or apoptosis of cells in response to cellular stress such as DNA damage. Because the oncoprotein MDM2 interacts with p53 and inhibits its activity, MDM2-p53 interaction has been a major target for the development of anticancer drugs. While previous studies have used phage display to identify peptides (such as DI) that inhibit the MDM2-p53 interaction, these peptides were not sufficiently optimized because the size of the phage-displayed random peptide libraries did not cover all of the possible sequences. In this study, we performed selection of MDM2-binding peptides from large random peptide libraries in two stages using mRNA display. We identified an optimal peptide named MIP that inhibited the MDM2-p53 and MDMX-p53 interactions 29- and 13-fold more effectively than DI, respectively. Expression of MIP fused to the thioredoxin scaffold protein in living cells by adenovirus caused stabilization of p53 through its interaction with MDM2, resulting in activation of the p53 pathway. Furthermore, expression of MIP also inhibited tumor cell proliferation in a p53-dependent manner more potently than DI. These results show that two-stage, mRNA-displayed peptide selection is useful for the rapid identification of potent peptides that target oncoproteins

    Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials

    Get PDF
    BACKGROUND: Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation. RESULTS: The frontal N30 component was accompanied by a significant phase-locking of beta/gamma oscillation (25-35 Hz) and to a lesser extent of 80 Hz oscillation. After the selection in each subject of the trials for which the power spectrum amplitude remained unchanged, we found pure phase-locking of beta/gamma oscillation (25-35 Hz) peaking about 30 ms after the stimulation. Transition across trials from uniform to normal phase distribution revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-locking with enhancement' in which the distinction between the contribution of phasic neural event versus EEG phase resetting is hazardous. CONCLUSION: The identification of a pure phase-locking in a large proportion of the SEP trials reinforces the contribution of the oscillatory model for the physiological correlates of the frontal N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in somatosensory information processing.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Optical coherence tomography in interventional cardiology—Research field or future daily routine?

    Get PDF
    AbstractNowadays, optical coherent tomography (OCT) as the most precise morphologic technique is used in the increasing number of cases, both in routine clinical situations and research projects. Huang and co-workers reported the first clinical use of the 2-dimensional OCT in 1991, suggesting the principle of its use both in ophthalmology and interventional cardiology. The method has developed rapidly since that time. Interventional cardiologists benefit from its detailed intravascular imaging ability, providing real-time information of the intracoronary pathology. Researchers acknowledge the resolution, allowing detailed analysis of vessel structure. Its axial resolution level is approximately 10–15μm, which is far from any other method used in interventional cardiology. The review will address the principle of the method and the main fields of the relatively short history of the OCT use as a routine clinical imaging method. We will summarize the main OCT milestones in the research field and its possible future as well. The review will describe OCT as the method under rapid development that should be considered as a new “gold” or even “platinum” standard for the coronary vessels imaging
    corecore