175 research outputs found

    Optical holonomic single quantum gates with a geometric spin under a zero field

    Full text link
    Realization of fast fault-tolerant quantum gates on a single spin is the core requirement for solid-state quantum-information processing. As polarized light shows geometric interference, spin coherence is also geometrically controlled with light via the spin-orbit interaction. Here, we show that a geometric spin in a degenerate subspace of a spin-1 electronic system under a zero field in a nitrogen vacancy center in diamond allows implementation of optical non-adiabatic holonomic quantum gates. The geometric spin under quasi-resonant light exposure undergoes a cyclic evolution in the spin-orbit space, and acquires a geometric phase or holonomy that results in rotations about an arbitrary axis by any angle defined by the light polarization and detuning. This enables universal holonomic quantum gates with a single operation. We demonstrate a complete set of Pauli quantum gates using the geometric spin preparation and readout techniques. The new scheme opens a path to holonomic quantum computers and repeaters

    Mutagenesis in rodents using the L1 retrotransposon

    Get PDF
    LINE1 (L1) retrotransposons are genetic elements that are present in all mammalian genomes. L1s are active in both humans and mice, and are capable of copying themselves and inserting the copy into a new genomic location. These de novo insertions occasionally result in disease. Endogenous L1 retrotransposons can be modified to increase their activity and mutagenic power in a variety of ways. Here we outline the advantages of using modified L1 retrotransposons for performing random mutagenesis in rodents and discuss several potential applications

    Effect of Pt Addition on the Formation of Ni-Pt Porous Layer

    Get PDF
    A Ni-Pt alloy porous layer was formed by electrodepositing Pt using Ni as the substrate sample, followed by Al-depositing and Al-dissolving. The Pt was electrolyzed using an aqueous solution as the medium, and the Al-depositing and Al-dissolving were treated using a molten salt as the medium. The molten salt used was NaCl-KCl with 3.5 mol% AlF3 added. It was found that Pt electrodeposition formed on the surface had a finer structure. Furthermore, it was clarified that the lower the electrodeposition potential, the thicker the Ni-Pt alloy porous layer. The cathode polarization curve was measured in KOH solution, and the hydrogen gas was determined when a constant voltage electrolysis was performed with a hydrogen detection gas sensor using a tubular yttria-stabilized zirconia (8 mol% Y2O3-ZrO2)

    Formation of LaNi5 Hydrogen Storage Alloy by Electrodeposition of La Using Molten Salt

    Get PDF
    A hydrogen storage alloy was formed by electrodepositing La using a molten salt. La was electrodeposited using Ni as a substrate in NaCl-KCl-5.0 mol% LaF3 molten salt at electrodeposition temperatures of 750 degrees C and 900 degrees C. The electrodeposition potential was -2.25 V. The LaNi5 hydrogen storage alloy was then prepared by the electrodeposition of La and the mutual diffusion of the Ni substrate. As a result, it was clarified that La can be electrodeposited by using a molten salt. Single-phase LaNi5 was produced at 750 degrees C rather than at 900 degrees C. It became possible to uniformly form LaNi5, an intermetallic compound, on the substrate surface. The prepared hydrogen storage alloy was exposed to Ar-10%H-2 to store hydrogen; at this time, hydrogen was stored by changing the sample temperature. The discharged hydrogen was measured by a gas sensor. It was clarified that the hydrogen storage and hydrogen discharge were the highest in the sample obtained by electrodepositing La for 1 h at 750 degrees C. LaNi5 formed by electrodeposition showed hydrogen storage properties, and this method was found to be effective even for samples with complex shapes

    Preparation and Characterization of Nitridation Layer on 4H SiC (0001) Surface by Direct Plasma Nitridation

    Get PDF
    A nitride layer was formed on a SiC surface by plasma nitridation using pure nitrogen as the reaction gas at the temperature from 800°C to 1400°C. The surface was characterized by XPS. The XPS measurement showed that an oxinitride layer was formed on the SiC surface by the plasma nitridation. The high process temperature seemed to be effective to activate the niridation reaction. A SiO2 film was deposited on the nitridation layer to form SiO2/nitride/SiC structure. The interface state density of the SiO2/nitride/SiC structure was lower than that of the SiO2/SiC structure. This suggested that the nitridation was effective to improve the interface property.ArticleMaterials Science Forum, Vols. 778-780, pp. 631-634 (2014)journal articl

    A Humanoid Robot with Anatomy Trains that can Passively Sustain Standing Postures

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P1

    Multiparametric analysis for pharynx SCC

    Get PDF
    Purpose : To predict local control / failure by a multiparametric approach using magnetic resonance (MR)-derived tumor morphological and functional parameters in pharynx squamous cell carcinoma (SCC) patients. Materials and Methods : Twenty-eight patients with oropharyngeal and hypopharyngeal SCCs were included in this study. Quantitative morphological parameters and intratumoral characteristics on T2-weighted images, tumor blood flow from pseudo-continuous arterial spin labeling, and tumor diffusion parameters of three diffusion models from multi-b-value diffusion-weighted imaging as well as patients’ characteristics were analyzed. The patients were divided into local control / failure groups. Univariate and multiparametric analysis were performed for the patient group division. Results : The value of morphological parameter of ‘sphericity’ and intratumoral characteristic of ‘homogeneity’ was revealed respectively significant for the prediction of the local control status in univariate analysis. Higher diagnostic performance was obtained with the sensitivity of 0.8, specificity of 0.75, positive predictive value of 0.89, negative predictive value of 0.6 and accuracy of 0.79 by multiparametric diagnostic model compared to results in the univariate analysis. Conclusion : A multiparametric analysis with MR-derived quantitative parameters may be useful to predict local control in pharynx SCC patients
    corecore