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Abstract: A Ni–Pt alloy porous layer was formed by electrodepositing Pt using Ni as the substrate
sample, followed by Al-depositing and Al-dissolving. The Pt was electrolyzed using an aqueous
solution as the medium, and the Al-depositing and Al-dissolving were treated using a molten salt
as the medium. The molten salt used was NaCl–KCl with 3.5 mol% AlF3 added. It was found
that Pt electrodeposition formed on the surface had a finer structure. Furthermore, it was clarified
that the lower the electrodeposition potential, the thicker the Ni-Pt alloy porous layer. The cathode
polarization curve was measured in KOH solution, and the hydrogen gas was determined when a
constant voltage electrolysis was performed with a hydrogen detection gas sensor using a tubular
yttria-stabilized zirconia (8 mol% Y2O3–ZrO2).

Keywords: hydrogen electrode; Ni–Pt alloy; hydrogen formation; oxygen-pump sensor

1. Introduction

Greenhouse gases are generated by the use of fossil fuels, and global warming has
become a major problem. Therefore, greenhouse gas emissions need to be suppressed.
Hydrogen energy, that does not emit greenhouse gases, is drawing attention [1,2]. At
present, it is required to inexpensively generate hydrogen produced by alkaline water
electrolysis. The cathode electrodes have been developed to generate hydrogen with a
high efficiency [3–17]. Ni alloys such as Ni–Zr alloys, Ni–Al alloys, Ni–Fe alloys and
Ni–Cu alloys are considered useful as electrode materials.Until now, Ni alloys have been
mainly used for cathode electrodes because of their good corrosion resistance in alkaline
water [8–17]. Pt is a catalytically active metal. The Ni–Pt alloy is considered to be promising
for further improving the performance [18–20]. Moreover, to improve the characteristics
of this Ni–Pt alloy, it is necessary to make it porous. However, there is a problem that the
price is high.

The authors have used molten salts to easily form porous surface layers of various
alloys [21,22]. In this study, improving the electrode performance by forming an alloy
containing Pt only on the surface by Pt electrodeposition used as a catalyst was investigated.
Figure 1 shows the method of forming the Ni–Pt alloy porous surface applied in this study.
First, Pt is electrodeposited using an aqueous solution as a medium (a). Next, Al is
electrodeposited using the molten salt as a medium (b). At this time, the electrodeposited
Al reacts with Pt and the base material Ni to form an alloy in order to carry out the
experiment at high temperature (c). The authors have clarified that Ni–Al is formed by Al
electrodeposition using Ni as a substrate [23]. A porous layer of Ni–Pt alloy is then formed
by dissolving only the Al (d). A porous surface of the Ni–Pt alloy can be formed only on the
surface. As a result, the amount of Pt used can be reduced. The hydrogen formation of the
generated porous Ni–Pt surface layer in an alkaline aqueous solution will be investigated.

It is difficult to measure the hydrogen by alkaline water electrolysis in situ. The authors
have in-situ measured hydrogen generated using ZrO2–Y2O3, which is a solid electrolyte.
It was clarified that a small amount of hydrogen can be accurately measured in situ [24,25].
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Figure 1. Method of the Ni–Pt alloy porous layer formation.

This study is to prepare a porous Ni–Pt alloy by Pt electrodeposition and porous
treatment in a molten salt, and to measure cathodic polarization curve. The Ni–Pt porous
layer was observed by SEM (JEOL, Tokyo, Japan), and the phase was identified by an
X-ray analysis. The cathode polarization curve in 10 mass% KOH was measured, and
the hydrogen was measured in situ using a hydrogen detection sensor, called an oxygen
pump-sensor, in order to evaluate the cathode performance. The relationship with the
amount of hydrogen generated under the formation conditions of the Ni–Pt alloy porous
layer was then clarified.

2. Experimental Procedure

The substrate was Ni, which is used for electrodes in alkaline water electrolysis. The
surface of the sample was polished to No. 800 with emery paper, then ultrasonically cleaned
in acetone. The surface area of the sample was 2 cm2. Pt was electrodeposited using a
commercial plating solution (NIPPON CHEMICAL INDUSTRIAL Co., Ltd., Tokyo, Japan)
under the conditions of a 20 mA cm−2 current density at 50 °C and for 30 min. The Counter
electrode is Pt mesh (2 cm2).

The Ni–Pt–Al alloy was then formed and only Al was dissolved to form a porous layer.
Therefore, Al was electrodeposited and dissolved. Only Al was then dissolved in the same
molten salt to prepare a porous layer after the Al electrodeposition.

The electrolytic cell used in this experiment was described in a previous report [23].
A graphite rod was used as the counter electrode. The bath temperature for the Al elec-
trodeposition and Al dissolution was 750 ◦C. Ar gas was flowed into the cell during the
experiment. Al was electrodeposited at −1.8 V. Al was electrodeposited for 30 min and
60 min only at −1.8 V. At the other potentials, Al was electrolyzed by a constant poten-
tial electrolysis for 30 min. The Al was then dissolved at −0.5 V in all the samples. Al
was dissolved until the anode current became zero. The cross section of the sample after
treatment was observed and analyzed by a scanning electron microscope and an X-ray
microanalyzer (JEOL, Tokyo, Japan). Furthermore, the formation layer was identified by
the X-ray diffraction method. X-ray source was CuKα rays.

The cathode polarization curve was measured in a 10 mass% KOH solution. The
measurement was performed in the cathode direction until the potential became −1.25 V
from the natural immersion potential.

Furthermore, the amount of hydrogen generated during the electrolysis was observed
in situ using a gas sensor. Figure 2 shows a schematic diagram of the equipment used
to measure the hydrogen formed by the electrolysis. In this way, the electrolysis was
performed between both electrodes at 3.0 V in a 10 mass% KOH.
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Figure 2. Schematic diagram of hydrogen generation amount measuring device by alkaline
water electrolysis.

Figure 3 shows a detailed diagram and principle of the oxygen pump and sensor. As
shown in Figure 3a, the tubular yttria-stabilized zirconia (8 mol% Y2O3–ZrO2) was used as
the oxygen pump sensor. The measurement gas flows in the YSZ-tube. The oxygen pump
sensor consists of a sensor part and a pump part. The Pt was used for the electrodes. The
potential was controlled by the sensor part so that the desired oxygen partial pressure was
achieved. Details of the hydrogen generation rate are shown in reference [25].
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Figure 3. Schematic diagram of oxygen pump sensor for hydrogen content measurement. (a) Overall
view, (b) Principle diagram.

3. Results and Discussion
3.1. Cross-Sectional Microstructure of the Sample Obtained by Electrodepositing Pt

Figure 4 shows the cross-section and the elemental mapping of the Ni and Pt of the
sample obtained by electrodeposition Pt at a current density of 20 mA cm−2 for 30 min.
It was found that an electrodeposition layer of about 5 µm was formed based on the
cross-sectional microstructure. The formed electrodeposition layer had a uniform thickness.
The adhesion between the electrodeposition layer and the Ni substrate was good, and no
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spalling of the Pt electrodeposition layer was observed. An electrodeposition layer of a Pt
single layer was formed as a result of the elemental analysis.
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Figure 4. Cross-sectional microstructure and element analysis of Pt-deposited sample on Ni substrate.

3.2. Morphology of Pt–Al-Treated Samples

Figure 5 shows the cross-sectional microstructure and point analysis results of Al
electrodeposition-treated sample at −1.8 V after Pt electrodeposition. The Al was 55.7 at.%
and Ni was 44.3 at.% at point 1 for Al −1.8 V, 30 min. No Pt content was observed in this
layer. The Al was 72.5 at.% and Ni was 24.5 at.%, and NiAl3 was formed at point 2. A small
amount of Pt was observed in this NiAl3. An Al monolayer was observed at point 3. The
sample with the Al electrodeposition time of 60 min showed the same layer morphology as
the sample with the Al electrodeposition of 30 min.
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sample at −1.8V after Pt electrodeposition.

Figure 6 shows the surface of a treated sample (Pt–Al Treatment) with Al electrodeposition-
dissolution after Pt electrodeposition. The experiment was carried out by changing the
electrodeposition time of Al after the electrodeposition of Pt. It can be seen that all the
samples are not flat. Furthermore, it was in the form of fine particles, and the many cracks
were observed. In particular, many fine cracks were observed in the sample.
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Figure 6. Surface morphology of Al porous sample after Pt electrodeposition. (a) Al electrodeposition
−1.8 V, 30 min, (b) Al electrodeposition −1.8 V, 60 min.

Figure 7 shows the X-ray diffraction patterns for Pt-Al treatment (a) −1.8 V for 30 min
and (b) −1.8 V for 60 min. The electrolytic conditions for Al are −1.8 V, 30 min and 60 min.
Only the Ni peak was observed regardless of the Al electrodeposition conditions in the
Al electrodeposition-dissolved sample after the Pt electrodeposition. This is because in
the phase diagram [26], Ni and Pt do not change their crystal structure and Pt replaces
the position of Ni. Therefore, only the peak of Ni was observed. It is considered that Pt is
dissolved in Ni.
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Figure 7. X-ray diffraction patterns for Pt-Al treatment (a) −1.8 V for 30 min and (b) −1.8 V for 60 min.

Figure 8 shows the cross-sectional microstructure and the results of a point analysis of
the porous treated sample of the Al electrodeposition-dissolution after Pt electrodeposition.
For (a), the Pt concentration in the outer layer of the Ni–Pt alloy porous layer was 15.0 at.%
(Point 1). However, it decreased to 4.3 at.% in the sample of (b) (Point 1). It is considered
that this is because Pt diffused due to the longer electrodeposition time. It was clarified that
the Pt concentration of the surface Ni–Pt alloy changes by changing the electrodeposition
conditions of Al.
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Al-dissolved under (a) −1.8 V for 30 min and (b) −1.8 V for 60 min each condition after Pt.

3.3. Measurement of Hydrogen of the Formed Porous Ni and Ni-Pt Alloys

Figure 9 shows the cathode polarization curves of the only Al treatment and Pt-Al
treatment measured in 10 mass% KOH. It was found that the cathode current density
increased due to the porosity treatment. The cathode current of the Al-only treated sample
was higher than that of the untreated sample. In addition, the cathode current density
of the porous-treated sample after the electrodeposition of Pt is dramatically higher than
that of the porous-treated sample without Pt. Cathodic polarization curve results show
higher performance than previously reported [18–20]. In other words, it was found that
the hydrogen generation performance was improved by forming a Ni–Pt alloy. Surface
roughness contributes to this phenomenon.
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Figure 10 shows the amount of hydrogen formation at the cathode electrode when
electrolyzed at 3.0 V in 10 mass% KOH. For (a), no significant difference from the untreated
sample was observed depending on the presence or absence of the Pt electrodeposition
when the electrodeposition conditions of Al were −1.8 V and 60 min. However, the amount
of generated hydrogen sharply increased when the electrodeposition condition of Al was
−1.8 V and 30 min. At this time, hydrogen is rapidly generated during the initial stage of
electrolysis. Especially, the amount of generated hydrogen sharply increased after 40 min
in the sample in which the Ni-Pt porosity was formed. After the experiment, the electrode
was stable without deterioration. For (b), the hydrogen generation behavior of porous
Ni–Co, which is the result of past research, is shown [25]. From this, it was clarified that
the addition of Pt dramatically increased the amount of hydrogen generation.

×

×

×

×

×

×

×

×

×

×

×

×

×

×

Figure 10. Time dependence of the amount of hydrogen generated measured by the oxygen pump sensor
under each condition of (a) Al and Pt-Al porosity treatment and (b) Ni-Co porosity treatment [25].

Table 1 shows a comparison with past research results. This is the total hydrogen
generation rate calculated by integrating Figure 10. Addition of Pt in this way dramatically
increases the amount of hydrogen generation.

Table 1. Relationship between each processing condition and the total hydrogen generation amount.

No Treatment [21] Al Pt-Al Previous Study
(Ni–Co) [25]

Hydrogen
Generation [mol] 2.1 × 10−4 6.2 × 10−4 8.5 × 10−4 3.0 × 10−4

Sample Surface area; 2 cm2.

4. Conclusions

An electrodeposited layer of the Ni–Al–Pt alloy was formed by performing Al elec-
trodeposition in a molten salt using Ni that had Pt deposited on the substrate. Furthermore,
the cathode polarization curve of the prepared porous Ni–Pt alloy surface layer was
measured. In addition, the amount of hydrogen generated during the constant voltage
electrolysis was measured by an oxygen pump sensor, which is a hydrogen detection gas
sensor. The obtained results are shown below.

1. A porous Ni-Pt alloy surface could be prepared by Pt electrodeposition and Al
electrodeposition-dissolution in a molten salt, and Pt was concentrated on the porous surface.

2. It was found that the Pt-deposited sample formed a denser surface with more
voids. It was clarified that the Ni–Pt alloy porous layer was thickened by setting the
electrodeposition potential of Al to −1.8 V for 30 min.
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3. Porous Ni–Pt alloys showed higher current densities at lower potentials in the cath-
ode polarization curve compared to the untreated Ni and Al electrodeposition-dissolution
treatments. The cathode polarization curve in an alkaline solution showed that the Ni–Pt
alloy porous surface layer prepared at the Al electrodeposition potential of −1.8 V was a
superior cathode material.

4. The sample that formed the Ni-Pt alloy porous layer generated more hydrogen in
the hydrogen generation experiment by constant voltage electrolysis. The performance
was dramatically improved compared to previous studies.

5. It was clarified that the porous electrode fabricated by this method exhibits
excellent performance.
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