305 research outputs found

    Furthering the Growth of Cloud Computing by Providing Privacy as a Service

    Get PDF
    The evolution of Cloud Computing as a viable business solution for providing hardware and software has created many security concerns. Among these security concerns, privacy is often overlooked. If Cloud Computing is to continue its growth, this privacy concern will need to be addressed. In this work we discuss the current growth of Cloud Computing and the impact the public sector and privacy can have in furthering this growth. To begin to provide privacy protection for Cloud Computing, we introduce privacy constraints that outline privacy preferences. We propose the expansion of Cloud Service Level Agreements (SLAs) to include these privacy constraints as Quality of Service (QoS) levels. This privacy QoS must be agreed upon along with the rest of the QoS terms within the SLA by the Cloud consumer and provider. Finally, we introduce Privacy as a Service (PraaS) to monitor the agreement and provide enforcement if necessary

    Rising to the challenge of COVID-19: Working on SARS-CoV-2 during the pandemic

    Get PDF
    COVID-19 altered our lives and pushed scientific research to operate at breakneck speed, leading to significant breakthroughs in record time. We asked experts in the field about the challenges they faced in transitioning, rapidly but safely, to working on the virus while navigating the shutdown. Their voices converge on the importance of teamwork, forging new collaborations, and working toward a shared goal

    MHCII-independent CD4(+) T cells protect injured CNS neurons via IL-4

    Get PDF
    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration

    The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    Get PDF
    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-ΞΊB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs

    Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy

    Get PDF
    BACKGROUND: Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1Ξ² (IL-1Ξ²) is activated early in sepsis. Whether IL-1Ξ² acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1Ξ² activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. METHODS: We performed an experimental study and prospective animal trial. The effect of IL-1Ξ² on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1Ξ² signaling is contained and active in myocytes. RESULTS: Immunostaining and reporter gene assays showed that IL-1Ξ² signaling is contained and active in myocytes. IL-1Ξ² increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1Ξ² serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96Β h after surgery. CONCLUSIONS: IL-1Ξ² directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1Ξ² activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients

    The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response

    Get PDF
    TANK-binding kinase 1 (TBK1) is of central importance for the induction of type-I interferon (IFN) in response to pathogens. We identified the DEAD-box helicase DDX3X as an interaction partner of TBK1. TBK1 and DDX3X acted synergistically in their ability to stimulate the IFN promoter, whereas RNAi-mediated reduction of DDX3X expression led to an impairment of IFN production. Chromatin immunoprecipitation indicated that DDX3X is recruited to the IFN promoter upon infection with Listeria monocytogenes, suggesting a transcriptional mechanism of action. DDX3X was found to be a TBK1 substrate in vitro and in vivo. Phosphorylation-deficient mutants of DDX3X failed to synergize with TBK1 in their ability to stimulate the IFN promoter. Overall, our data imply that DDX3X is a critical effector of TBK1 that is necessary for type I IFN induction

    NLRP3 Inflammasome: Key Mediator of Neuroinflammation in Murine Japanese Encephalitis

    Get PDF
    Background: Japanese Encephalitis virus (JEV) is a common cause of acute and epidemic viral encephalitis. JEV infection is associated with microglial activation resulting in the production of pro-inflammatory cytokines including Interleukin-1 b (IL-1b) and Interleukin-18 (IL-18). The Pattern Recognition Receptors (PRRs) and the underlying mechanism by which microglia identify the viral particle leading to the production of these cytokines is unknown. Methodology/Principal Findings: For our studies, we have used murine model of JEV infection as well as BV-2 mouse microglia cell line. In this study, we have identified a signalling pathway which leads to the activation of caspase-1 as the key enzyme responsible for the maturation of both IL-1b and IL-18 in NACHT, LRR and PYD domains-containing protein-3 (NLRP3) dependent manner. Depletion of NLRP3 results in the reduction of caspase-1 activity and subsequent production of these cytokines. Conclusion/Significance: Our results identify a mechanism mediated by Reactive Oxygen Species (ROS) production and potassium efflux as the two danger signals that link JEV infection to caspase-1 activation resulting in subsequent IL-1b an

    Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections

    Get PDF
    Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. About 1538 participants with active HIV and/or HCV infection in three ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with log IL-18 including HCV and HIV infection status, and HIV RNA in each ancestry group and then meta-analyzed. Eleven highly correlated single-nucleotide polymorphisms (rΒ²=0.98–1) in the IL-18-BCO2 region were significantly associated with log IL-18; each T allele of rs80011693 confers a decrease of 0.06 log pg ml⁻¹ of IL-18 after adjusting for covariates (rs80011693; rs111311302 Ξ²=βˆ’0.06, P-value=2.7 Γ— 10⁻⁴). In conclusion, genetic variation in IL-18 is associated with IL-18 production in response to HIV and HCV infection, and may explain variability in the inflammatory outcomes of chronic viral infections

    Quantitative Subcellular Proteome and Secretome Profiling of Influenza A Virus-Infected Human Primary Macrophages

    Get PDF
    Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages

    IL-1Ξ² Processing in Host Defense: Beyond the Inflammasomes

    Get PDF
    Stimulation and release of proinflammatory cytokines is an essential step for the activation of an effective innate host defense, and subsequently for the modulation of adaptive immune responses. Interleukin-1Ξ² (IL-1Ξ²) and IL-18 are important proinflammatory cytokines that on the one hand activate monocytes, macropages, and neutrophils, and on the other hand induce Th1 and Th17 adaptive cellular responses. They are secreted as inactive precursors, and the processing of pro-IL-1Ξ² and pro-IL-18 depends on cleavage by proteases. One of the most important of these enzymes is caspase-1, which in turn is activated by several protein platforms called the inflammasomes. Inflammasome activation differs in various cell types, and knock-out mice defective in either caspase-1 or inflammasome components have an increased susceptibility to several types of infections. However, in other infections and in models of sterile inflammation, caspase-1 seems to be less important, and alternative mechanisms such as neutrophil-derived serine proteases or proteases released from microbial pathogens can process and activate IL-1Ξ². In conclusion, IL-1Ξ²/IL-18 processing during infection is a complex process in which the inflammasomes are only one of several activation mechanisms
    • …
    corecore