155 research outputs found

    Common Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson's Disease: An Observational and Case-Control Study.

    Get PDF
    Background/objectivesThe common non-coding single nucleotide polymorphism (SNP) rs3129882 in HLA-DRA is associated with risk for idiopathic Parkinson's disease (PD). The location of the SNP in the major histocompatibility complex class II (MHC-II) locus implicates regulation of antigen presentation as a potential mechanism by which immune responses link genetic susceptibility to environmental factors in conferring lifetime risk for PD.MethodsFor immunophenotyping, blood cells from 81 subjects were analyzed by qRT-PCR and flow cytometry. A case-control study was performed on a separate cohort of 962 subjects to determine association of pesticide exposure and the SNP with risk of PD.ResultsHomozygosity for G at this SNP was associated with heightened baseline expression and inducibility of MHC class II molecules in B cells and monocytes from peripheral blood of healthy controls and PD patients. In addition, exposure to a commonly used class of insecticide, pyrethroids, synergized with the risk conferred by this SNP (OR = 2.48, p = 0.007), thereby identifying a novel gene-environment interaction that promotes risk for PD via alterations in immune responses.ConclusionsIn sum, these novel findings suggest that the MHC-II locus may increase susceptibility to PD through presentation of pathogenic, immunodominant antigens and/or a shift toward a more pro-inflammatory CD4+ T cell response in response to specific environmental exposures, such as pyrethroid exposure through genetic or epigenetic mechanisms that modulate MHC-II gene expression

    Peripheral Administration of the Soluble TNF Inhibitor XPro1595 Modifies Brain Immune Cell Profiles, Decreases Beta-Amyloid Plaque Load, and Rescues Impaired Long-Term Potentiation in 5xFAD Mice

    Get PDF
    Clinical and animal model studies have implicated inflammation and peripheral immune cell responses in the pathophysiology of Alzheimer’s disease (AD). Peripheral immune cells including T cells circulate in the cerebrospinal fluid (CSF) of healthy adults and are found in the brains of AD patients and AD rodent models. Blocking entry of peripheral macrophages into the CNS was reported to increase amyloid burden in an AD mouse model. To assess inflammation in the 5xFAD (Tg) mouse model, we first quantified central and immune cell profiles in the deep cervical lymph nodes and spleen. In the brains of Tg mice, activated (MHCII+, CD45high, and Ly6Chigh) myeloid-derived CD11b+ immune cells are decreased while CD3+ T cells are increased as a function of age relative to non-Tg mice. These immunological changes along with evidence of increased mRNA levels for several cytokines suggest that immune regulation and trafficking patterns are altered in Tg mice. Levels of soluble Tumor Necrosis Factor (sTNF) modulate blood-brain barrier (BBB) permeability and are increased in CSF and brain parenchyma post-mortem in AD subjects and Tg mice. We report here that in vivo peripheral administration of XPro1595, a novel biologic that sequesters sTNF into inactive heterotrimers, reduced the age-dependent increase in activated immune cells in Tg mice, while decreasing the overall number of CD4+ T cells. In addition, XPro1595 treatment in vivo rescued impaired long-term potentiation (LTP) measured in brain slices in association with decreased Aβ plaques in the subiculum. Selective targeting of sTNF may modulate brain immune cell infiltration, and prevent or delay neuronal dysfunction in AD

    Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response

    Get PDF
    Mild cognitive impairment following chemotherapy is one of the most commonly reported post treatment symptoms by breast cancer survivors. This deterioration in cognitive function, commonly referred to as “chemobrain” or “chemofog,” was largely unacknowledged by the medical community until recent years. Although chemobrain has now become the subject of more vigorous exploration, little is known about this specific phenomenon’s psychosocial impact on breast cancer survivors. This research documents in-depth the effects that cognitive impairment has on women’s personal and professional lives, and our data suggest that greater attention needs to be focused on this arena of survivorship. The results are based on an in-depth qualitative study of 74 white and African American breast cancer survivors in California who experience post-treatment side effects. The data reported herein were obtained through the use of focus groups and in-depth interviews. Our data indicate that cognitive impairment can be problematic for survivors, with many asserting that it is their most troublesome post treatment symptom. Survivors report diminished quality of life and daily functioning as a result of chemobrain. Respondents detail a range of coping strategies that they are forced to employ in order to manage their social and professional lives. Chemobrain significantly impairs a proportion of cancer survivors, at great cost to them economically, emotionally, and interpersonally. This suggests that more research needs to be conducted on the psychosocial ramifications of post treatment symptoms in order to inform the efforts of the medical and mental health communities as well as the support networks of survivors. A better and broader understanding of the effects of cognitive impairment both in the medical community and among lay people could pave the way for improved social and psychological services for this population

    A Novel Role for Aquaporin-5 in Enhancing Microtubule Organization and Stability

    Get PDF
    Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function

    Simvastatin as a Potential Disease-Modifying Therapy for Patients with Parkinson’s Disease: Rationale for Clinical Trial, and Current Progress

    Get PDF

    Anticancer Agents

    No full text

    FGFR inhibitor induced peripheral neuropathy in patients with advanced RCC

    No full text
    corecore