14 research outputs found

    Effects of Amylose-To-Amylopectin Ratios on Binding Capacity of DDGS/Soy-Based Aquafeed Blends

    Get PDF
    Demands for seafood products are steadily increasing. Alternative protein sources are required to compensate for enormous amounts of fishmeal that is needed for global seafood production. Starch is a food polymer that can be added to fish feed formulations to enhance binding and expanding capabilities of extrudates. Floatability, a key factor for most aqua feeds, can be optimized by the addition of certain starch sources. Six ingredient blends with a similar protein content (~32.5%) containing two starch sources, Hylon VII (containing 70% amylose, 30% amylopectin) or Waxy I (containing 0% amylose, 100% amylopectin), 20% distillers dried grain with solubles (DDGS), and 15, 25, and 35% moisture content were used along with appropriate amounts of soybean meal, menhaden fishmeal, whey, vitamin and mineral mix to investigate nutritionally-balanced feeds for Nile tilapia (Oreochromis niloticus L.). The blends were processed using a laboratory single-screw extruder with varying temperature settings (90-90-90°C, 100-120-120°C, and 100-120-140°C), screw speeds (100, 120, and 140 rpm), and length/diameter ratio (3.4, 6.6, 9.2) of the die. Extensive analyses of expansion ratio (ER), unit density (UD), sinking velocity (SV), and pellet durability indices (PDI), water absorption (WAI) and water solubility indices (WSI) were conducted to evaluate the effects of the two starch sources on extrudate binding and floating capacity. By varying process conditions, significant differences (P\u3e0.05) among the blends were detected for all extrudate physical properties. Significantly higher values for ER, UD, and PDI were achieved by using the Waxy I starch source, while values for SV and WAI decreased. For WSI no significant differences were detected. Increasing the moisture content from 15-35% resulted in a significant increase in ER, WAI, and PDI and a significant decrease in UD. WSI showed no clear pattern in changes. The impact of different amylopectin to amylose ratio, temperature and moisture content on extrudate stability, cohesion and physical properties was demonstrated in this study. All formulations yielded viable extrudates while the blends with the amylopectin as the sole source of starch resulted in higher quality extrudates

    Twin Screw Extrusion of DDGS-Based Aquaculture Feeds

    Get PDF
    Six isocaloric (3.65 kcal/g), isonitrogenous (35% dry-basis [db] protein), ingredient blends were prepared with 0, 17.5, 20, 22.5, 25, and 27.5% distiller’s dried grains with solubles (DDGS) and other ingredients (soybean meal, corn, fish meal, whey, soybean oil, vitamin and mineral mix). The blends were moisture balanced to 15% db, then extruded in a twin screw extruder using a 2 mm die at 190 rpm, and a 3 mm die at 348 rpm. Analyses of the extrudates included moisture content, expansion ratio, unit density, bulk density, sinking velocity, color (L*, a*, and b*), water absorption, water solubility, and pellet durability indices. Increasing the DDGS level from 0 to 17.5% db resulted in decreased expansion ratios by 14.8 and 23.5% for the products extruded using a 2 and 3 mm die, respectively. No significant difference in expansion ratio existed for DDGS levels between 17.5 and 27.5% db for either die. The water solubility index (WSI) of the extrudates increased (25.2 and 24.0%) as the DDGS increased from 0 to 27.5% db for each die. The 0% DDGS had the highest expansion ratio and the lowest unit density, bulk density, and sinking velocity. The extrudates that contained 20 and 27.5% DDGS had the highest durability and sinking velocity values

    Effects of Amylose-To-Amylopectin Ratios on Binding Capacity of DDGS/Soy-Based Aquafeed Blends

    No full text
    Demands for seafood products are steadily increasing. Alternative protein sources are required to compensate for enormous amounts of fishmeal that is needed for global seafood production. Starch is a food polymer that can be added to fish feed formulations to enhance binding and expanding capabilities of extrudates. Floatability, a key factor for most aqua feeds, can be optimized by the addition of certain starch sources. Six ingredient blends with a similar protein content (~32.5%) containing two starch sources, Hylon VII (containing 70% amylose, 30% amylopectin) or Waxy I (containing 0% amylose, 100% amylopectin), 20% distillers dried grain with solubles (DDGS), and 15, 25, and 35% moisture content were used along with appropriate amounts of soybean meal, menhaden fishmeal, whey, vitamin and mineral mix to investigate nutritionally-balanced feeds for Nile tilapia (Oreochromis niloticus L.). The blends were processed using a laboratory single-screw extruder with varying temperature settings (90-90-90°C, 100-120-120°C, and 100-120-140°C), screw speeds (100, 120, and 140 rpm), and length/diameter ratio (3.4, 6.6, 9.2) of the die. Extensive analyses of expansion ratio (ER), unit density (UD), sinking velocity (SV), and pellet durability indices (PDI), water absorption (WAI) and water solubility indices (WSI) were conducted to evaluate the effects of the two starch sources on extrudate binding and floating capacity. By varying process conditions, significant differences (P>0.05) among the blends were detected for all extrudate physical properties. Significantly higher values for ER, UD, and PDI were achieved by using the Waxy I starch source, while values for SV and WAI decreased. For WSI no significant differences were detected. Increasing the moisture content from 15-35% resulted in a significant increase in ER, WAI, and PDI and a significant decrease in UD. WSI showed no clear pattern in changes. The impact of different amylopectin to amylose ratio, temperature and moisture content on extrudate stability, cohesion and physical properties was demonstrated in this study. All formulations yielded viable extrudates while the blends with the amylopectin as the sole source of starch resulted in higher quality extrudates.This article is from Journal of Food Research 5 (2016): 43–56, doi:10.5539/jfr.v5n5p43. Posted with permission.</p

    Drying Kinetics of Distillers Wet Grains (DWG) Under Varying Condensed Distillers Solubles (CDS) and Temperature Levels

    Get PDF
    Distillers dried grains with solubles (DDGS) is a widely used animal feed. But transportation of DDGS is often troublesome because of its stickiness. DDGS is formed by combining condensed distillers solubles (CDS) with distillers wet grains (DWG) and then drying. As a first step toward understanding drying behavior, this study’s objective was to investigate batch-drying kinetic behavior of DWG with three CDS addition levels (10, 15, and 20% wb) and three drying temperature levels (100, 200, and 300°C). Multiple nonlinear mathematical models were used to fit experimental drying data for moisture content versus drying rate. A new comprehensive model was developed (R² = 0.89, SEM = 18.60) from a modified Chen and Douglas model to incorporate CDS and drying-temperature terms. Drying temperature affected drying rate more significantly than did changes in CDS level; thus, drying temperature was the main effect and CDS was a subeffect. Increasing the drying temperature increased the drying rate significantly for all levels of CDS addition. This model can be used for predicting DWG drying behavior under broad operating conditions; it can be used to help the industry produce better DDGS, which may thus result in better DDGS handling and transport characteristics
    corecore