97 research outputs found

    Phase II Randomized, Double-Masked, Vehicle-Controlled Trial of Recombinant Human Nerve Growth Factor for Neurotrophic Keratitis

    Get PDF
    Purpose: To evaluate the safety and efficacy of topical recombinant human nerve growth factor (rhNGF) for treating moderate-to-severe neurotrophic keratitis (NK), a rare degenerative corneal disease resulting from impaired corneal innervation. Design: Phase II multicenter, randomized, double-masked, vehicle-controlled trial. Participants: Patients with stage 2 (moderate) or stage 3 (severe) NK in 1 eye. Methods: The REPARO phase II study assessed safety and efficacy in 156 patients randomized 1:1:1 to rhNGF 10 \u3bcg/ml, 20 \u3bcg/ml, or vehicle. Treatment was administered 6 drops per day for 8 weeks. Patients then entered a 48- or 56-week follow-up period. Safety was assessed in all patients who received study treatment, whereas efficacy was by intention to treat. Main Outcome Measures: Corneal healing (defined as <0.5-mm maximum diameter of fluorescein staining in the lesion area) was assessed by masked central readers at week 4 (primary efficacy end point) and week 8 (key secondary end point) of controlled treatment. Corneal healing was reassessed post hoc by masked central readers using a more conservative measure (0-mm staining in the lesion area and no other persistent staining). Results: At week 4 (primary end point), 19.6% of vehicle-treated patients achieved corneal healing (<0.5-mm lesion staining) versus 54.9% receiving rhNGF 10 \u3bcg/ml (+35.3%; 97.06% confidence interval [CI], 15.88\u201354.71; P < 0.001) and 58.0% receiving rhNGF 20 \u3bcg/ml (+38.4%; 97.06% CI, 18.96\u201357.83; P < 0.001). At week 8 (key secondary end point), 43.1% of vehicle-treated patients achieved less than 0.5-mm lesion staining versus 74.5% receiving rhNGF 10 \u3bcg/ml (+31.4%; 97.06% CI, 11.25\u201351.49; P = 0.001) and 74.0% receiving rhNGF 20 \u3bcg/ml (+30.9%; 97.06% CI, 10.60\u201351.13; P = 0.002). Post hoc analysis of corneal healing by the more conservative measure (0-mm lesion staining and no other persistent staining) maintained statistically significant differences between rhNGF and vehicle at weeks 4 and 8. More than 96% of patients who healed after controlled rhNGF treatment remained recurrence free during follow-up. Treatment with rhNGF was well tolerated; adverse effects were mostly local, mild, and transient. Conclusions: Topical rhNGF is safe and more effective than vehicle in promoting healing of moderate-to-severe NK

    Increased Corneal Epithelial Turnover Contributes to Abnormal Homeostasis in the Pax6(+/-) Mouse Model of Aniridia

    Get PDF
    We aimed to test previous predictions that limbal epithelial stem cells (LESCs) are quantitatively deficient or qualitatively defective in Pax6(+/-) mice and decline with age in wild-type (WT) mice. Consistent with previous studies, corneal epithelial stripe patterns coarsened with age in WT mosaics. Mosaic patterns were also coarser in Pax6(+/-) mosaics than WT at 15 weeks but not at 3 weeks, which excludes a developmental explanation and strengthens the prediction that Pax6(+/-) mice have a LESC-deficiency. To investigate how Pax6 genotype and age affected corneal homeostasis, we compared corneal epithelial cell turnover and label-retaining cells (LRCs; putative LESCs) in Pax6(+/-) and WT mice at 15 and 30 weeks. Limbal BrdU-LRC numbers were not reduced in the older WT mice, so this analysis failed to support the predicted age-related decline in slow-cycling LESC numbers in WT corneas. Similarly, limbal BrdU-LRC numbers were not reduced in Pax6(+/-) heterozygotes but BrdU-LRCs were also present in Pax6(+/-) corneas. It seems likely that Pax6(+/-) LRCs are not exclusively stem cells and some may be terminally differentiated CD31-positive blood vessel cells, which invade the Pax6(+/-) cornea. It was not, therefore, possible to use this approach to test the prediction that Pax6(+/-) corneas had fewer LESCs than WT. However, short-term BrdU labelling showed that basal to suprabasal movement (leading to cell loss) occurred more rapidly in Pax6(+/-) than WT mice. This implies that epithelial cell loss is higher in Pax6(+/-) mice. If increased corneal epithelial cell loss exceeds the cell production capacity it could cause corneal homeostasis to become unstable, resulting in progressive corneal deterioration. Although it remains unclear whether Pax6(+/-) mice have LESC-deficiency, we suggest that features of corneal deterioration, that are often taken as evidence of LESC-deficiency, might occur in the absence of stem cell deficiency if corneal homeostasis is destabilised by excessive cell loss
    • …
    corecore