11 research outputs found

    Characterization of brown streak virus-resistant cassava

    Get PDF
    Cassava brown streak disease (CBSD) has become a major constraint to cassava production in East and Central Africa. The identification of new sources of CBSD resistance is essential to deploy CBSD mitigation strategies as the disease is progressing westwards to new geographical areas. A stringent infection method based on top cleft grafting combined with precise virus titer quantitation was utilized to screen fourteen cassava cultivars and elite breeding lines. When inoculated with mixed infections of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the scions of elite breeding lines KBH 2006/18 and KBH 2006/26 remained symptom-free during a 16-week period of virus graft inoculation, while susceptible varieties displayed typical CBSD infection symptoms at 4 weeks after grafting. The identified CBSD resistance was stable under the co-inoculation of CBSV, UCBSV with cassava geminiviruses (CGMs). Double grafting experiments revealed that transmission of CBSV and UCBSV to CBSD susceptible top scions was delayed when using intermediate scions of elite breeding lines KBH 2006/18 and KBH 2006/26. Nonetheless, comparison of virus systemic movement using scions from KBH2006/18 and a transgenic CBSD resistant 60444 line (60444-Hp9 line) showed that both CBSV and UCBSV move at undetectable levels through the stems. Further, protoplast-based assays of virus titers over time showed that the replication of CBSVs is inhibited in the resistant line KBH2006/18, suggesting that the identified CBSD resistance is at least partially based on inhibition of virus replication. Our molecular characterization of CBSD resistance in cassava offers a robust virus–host system to further investigate the molecular determinants of CBSD resistance

    The process and lessons of exchanging and managing in-vitro elite germplasm to combat CBSD and CMD in Eastern and Southern Africa

    Get PDF
    Varieties with resistance to both cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) can reverse food and income security threats affecting the rural poor in Eastern and Southern Africa. The International Institute of Tropical Agriculture is leading a partnership of five national (Malawi, Mozambique, Kenya, Tanzania and Uganda) cassava breeding programs to exchange the most elite germplasm resistant to both CMD and CBSD. This poster documents the process and the key learning lessons. Twenty to 25 stem cuttings of 31 clones comprising of 25 elite clones (5 per country), two standard checks (Kibandameno from Kenya and Albert from Tanzania), and four national checks (Kiroba and Mkombozi from Tanzania, Mbundumali from Malawi, and Tomo from Mozambique) were cleaned and indexed for cassava viruses at both the Natural Resources Institute in the United Kingdom and Kenya Plant Health Inspectorate Services, in Kenya. About 75 in-vitro plantlets per clone were sent to Genetic Technologies International Limited, a private tissue culture lab in Kenya, and micro-propagated to ≥1500 plantlets. Formal procedures of material transfer between countries including agreements, import permission and phytosanitary certification were all ensured for germplasm exchange. At least 300 plantlets of each elite and standard check clones were sent to all partner countries, while the national checks were only sent to their respective countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transplanted for field multiplication as a basis for multi-site testing. Except for Tomo, a susceptible clone, all the clones were cleaned of the viruses. However, there was varied response to the cleaning process between clones, e.g. FN-19NL, NASE1 and Kibandameno responded slowly. Also, clones responded differently to micro-propagation protocols at GTIL, e.g. Pwani, Tajirika, NASE1, TME204 and Okhumelela responded slowly. Materials are currently being bulked at low disease pressure field sites in preparation for planting at 5-8 evaluation sites per country. The process of cleaning, tissue culture mass propagation, exchange and local hardening off/bulking has been successful for the majority of target varieties. Two key lessons derived from the process are that adequate preparations of infrastructure and trained personnel are required to manage the task, and that a small proportion of varieties are recalcitrant to tissue culture propagation

    High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations

    Get PDF
    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.Bill and Melinda Gates Foundation (BMGF) Grant OPPGD1493. University of Arizona. CGIAR Research Program on Roots, Tubers, and Bananas. Next Generation Cassava Breeding grant OPP1048542 from BMGF and the United Kingdom Department for International Development. BMGF grant OPPGD1016 to IITA. National Institutes of Health S10 Instrumentation Grants S10RR029668 and S10RR027303.http://www.g3journal.orghb201

    Not Available

    Get PDF
    Not AvailableCassava brown streak disease (CBSD) has emerged as the most important viral disease of cassava (Manihot esculenta) in Africa and is a major threat to food security. CBSD is caused by two distinct species of ipomoviruses, Cassava brown streak virus and Ugandan cassava brown streak virus, belonging to the family Potyviridae. Previously, CBSD was reported only from the coastal lowlands of East Africa, but recently it has begun to spread as an epidemic throughout the Great Lakes region of East and Central Africa. This new spread represents a major threat to the cassava-growing regions of West Africa. CBSD-resistant cassava cultivars are being developed through breeding, and transgenic RNA interference-derived field resistance to CBSD has also been demonstrated. This review aims to provide a summary of the most important studies on the aetiology, epidemiology and control of CBSD and to highlight key research areas that need prioritization.Not Availabl
    corecore