25 research outputs found

    MicroRNAs as Biomarkers for Myocardial Infarction

    Get PDF
    MicroRNAs (miRs) are short non-coding RNA molecules involved in post-transcriptional gene regulation by binding to the 3′ untranslated region of a messenger RNA (mRNA), thereby inhibiting the translation or inducing mRNA destabilization. MiRs are generally considered to act as intracellular mediators essential for normal cardiac function, and their deregulated expression profiles have been associated with cardiovascular diseases. Recent studies have revealed the existence of freely circulating miRs in human peripheral blood, which are present in a stable nature. This has raised the possibility that miRs may be released in the circulation and can serve as novel diagnostic markers for acute or chronic human disorders, including myocardial infarction (MI). This review summarizes the recent findings of miRs that fulfill the criteria of candidate biomarkers for MI

    Intervention with isoleucine or valine corrects hyperinsulinemia and reduces intrahepatic diacylglycerols, liver steatosis, and inflammation in Ldlr−/−.Leiden mice with manifest obesity-associated NASH

    No full text
    Non-alcoholic steatohepatitis (NASH) is associated with a disturbed metabolism in liver, insulin resistance, and excessive accumulation of ectopic fat. Branched-chain amino acids (BCAAs) may beneficially modulate hepatic lipids, however, it remains unclear whether individual BCAAs can attenuate already established NASH and associated oxidative-inflammatory stress. After a 26 weeks run-in on fast food diet (FFD), obese Ldlr−/−.Leiden mice were treated for another 12 weeks with either valine or isoleucine (3% of FFD) and then compared to FFD controls. Valine and isoleucine did not affect obesity, dyslipidemia, gut permeability, or fecal fatty acid excretion, but significantly reduced hyperinsulinemia. Valine and isoleucine reduced ALT, CK18-M30, and liver steatosis with a particularly pronounced suppression of the microvesicular component (−61% by valine and −71% by isoleucine). Both BCAAs decreased intrahepatic diacylglycerols and 4-hydroxynonenal immunoreactivity, a marker for oxidative stress-induced lipid peroxidation. Functional genomics analysis demonstrated that valine and isoleucine affected BCAA metabolism genes, deactivated master regulators of anabolic pathways related to steatosis (e.g., SREBPF1), and activated master regulators of mitochondrial biogenesis (e.g., PPARGC1A) and lipid catabolism (e.g., ACOX1, AMPK). This correction of critical metabolic pathways on gene expression level was accompanied by a significant decrease in histological liver inflammation, and suppression of FFD-stimulated cytokine and chemokine proteins KC/CXCL1, MCP-1/CCL2, and MIP-2/CXCL2 and their pathways. In conclusion, dietary intervention with either valine or isoleucine corrected liver diacylglycerols, gene expression of multiple metabolic processes, and reduced NASH histology with profound hepatoprotective effects on oxidative stress and inflammatory proteins

    Diet-independent correlations between bacteria and dysfunction of gut, adipose tissue, and liver : A comprehensive microbiota analysis in feces and mucosa of the ileum and colon in obese mice with NAFLD

    No full text
    Development of non-alcoholic fatty liver disease (NAFLD) is linked to obesity, adipose tissue inflammation, and gut dysfunction, all of which depend on diet. So far, studies have mainly focused on diet-related fecal microbiota changes, but other compartments may be more informative on host health. We present a first systematic analysis of microbiota changes in the ileum and colon using multiple diets and investigating both fecal and mucosal samples. Ldlr−/−.Leiden mice received one of three different energy-dense (ED)-diets (n = 15/group) for 15 weeks. All of the ED diets induced obesity and metabolic risk factors, altered short-chain fatty acids (SCFA), and increased gut permeability and NAFLD to various extents. ED diets reduced the diversity of high-abundant bacteria and increased the diversity of low-abundant bacteria in all of the gut compartments. The ED groups showed highly variable, partially overlapping microbiota compositions that differed significantly from chow. Correlation analyses demonstrated that (1) specific groups of bacteria correlate with metabolic risk factors, organ dysfunction, and NAFLD endpoints, (2) colon mucosa had greater predictive value than other compartments, (3) correlating bacteria differed per compartment, and (4) some bacteria correlated with plasma SCFA levels. In conclusion, this comprehensive microbiota analysis demonstrates correlations between the microbiota and dysfunctions of gut, adipose tissue, and liver, independent of a specific disease-inducing diet.</p

    Combined Treatment with L-Carnitine and Nicotinamide Riboside Improves Hepatic Metabolism and Attenuates Obesity and Liver Steatosis

    No full text
    Obesity characterized by adiposity and ectopic fat accumulation is associated with the development of non-alcoholic fatty liver disease (NAFLD). Treatments that stimulate lipid utilization may prevent the development of obesity and comorbidities. This study evaluated the potential anti-obesogenic hepatoprotective effects of combined treatment with L-carnitine and nicotinamide riboside, i.e., components that can enhance fatty acid transfer across the inner mitochondrial membrane and increase nicotinamide adenine nucleotide (NAD+) levels, which are necessary for β-oxidation and the TCA cycle, respectively. Ldlr -/-.Leiden mice were treated with high-fat diet (HFD) supplemented with L-carnitine (LC; 0.4% w/w), nicotinamide riboside (NR; 0.3% w/w) or both (COMBI) for 21 weeks. L-carnitine plasma levels were reduced by HFD and normalized by LC. NR supplementation raised its plasma metabolite levels demonstrating effective delivery. Although food intake and ambulatory activity were comparable in all groups, COMBI treatment significantly attenuated HFD-induced body weight gain, fat mass gain (-17%) and hepatic steatosis (-22%). Also, NR and COMBI reduced hepatic 4-hydroxynonenal adducts. Upstream-regulator gene analysis demonstrated that COMBI reversed detrimental effects of HFD on liver metabolism pathways and associated regulators, e.g., ACOX, SCAP, SREBF, PPARGC1B, and INSR. Combination treatment with LC and NR exerts protective effects on metabolic pathways and constitutes a new approach to attenuate HFD-induced obesity and NAFLD.</p

    Cholesterol Accumulation as a Driver of Hepatic Inflammation Under Translational Dietary Conditions Can Be Attenuated by a Multicomponent Medicine

    No full text
    Background: Non-alcoholic fatty liver disease (NAFLD) is a complex multifactorial disorder that is characterised by dysfunctional lipid metabolism and cholesterol homeostasis, and a related chronic inflammatory response. NAFLD has become the most common cause of chronic liver disease in many countries, and its prevalence continues to rise in parallel with increasing rates of obesity. Here, we evaluated the putative NAFLD-attenuating effects of a multicomponent medicine consisting of 24 natural ingredients: Hepar compositum (HC-24). Methods: Ldlr-/-.Leiden mice were fed a high-fat diet (HFD) with a macronutrient composition and cholesterol content comparable to human diets for 24 weeks to induce obesity-associated metabolic dysfunction, including hepatic steatosis and inflammation. HC-24 or vehicle control was administered intraperitoneally 3 times/week (1.5 ml/kg) for the last 18 weeks of the study. Histological analyses of liver and adipose tissue were combined with extensive hepatic transcriptomics analysis. Transcriptomics results were further substantiated with ELISA, immunohistochemical and liver lipid analyses. Results: HFD feeding induced obesity and metabolic dysfunction including adipose tissue inflammation and increased gut permeability. In the liver, HFD-feeding resulted in a disturbance of cholesterol homeostasis and an associated inflammatory response. HC-24 did not affect body weight, metabolic risk factors, adipose tissue inflammation or gut permeability. While HC-24 did not alter total liver steatosis, there was a pronounced reduction in lobular inflammation in HC-24-treated animals, which was associated with modulation of genes and proteins involved in inflammation (e.g., neutrophil chemokine Cxcl1) and cholesterol homeostasis (i.e., predicted effect on ‘cholesterol’ as an upstream regulator, based on gene expression changes associated with cholesterol handling). These effects were confirmed by CXCL1 ELISA, immunohistochemical staining of neutrophils and biochemical analysis of hepatic free cholesterol content. Intrahepatic free cholesterol levels were found to correlate significantly with the number of inflammatory aggregates in the liver, thereby providing a potential rationale for the observed anti-inflammatory effects of HC-24. Conclusions: Free cholesterol accumulates in the liver of Ldlr-/-.Leiden mice under physiologically translational dietary conditions, and this is associated with the development of hepatic inflammation. The multicomponent medicine HC-24 reduces accumulation of free cholesterol and has molecular and cellular anti-inflammatory effects in the liver.</p

    Krill oil treatment increases distinct pufas and oxylipins in adipose tissue and liver and attenuates obesity-associated inflammation via direct and indirect mechanisms

    Get PDF
    The development of obesity is characterized by the metabolic overload of tissues and sub-sequent organ inflammation. The health effects of krill oil (KrO) on obesity-associated inflammation remain largely elusive, because long-term treatments with KrO have not been performed to date. Therefore, we examined the putative health effects of 28 weeks of 3% (w/w) KrO supplementation to an obesogenic diet (HFD) with fat derived mostly from lard. The HFD with KrO was compared to an HFD control group to evaluate the effects on fatty acid composition and associated inflammation in epididymal white adipose tissue (eWAT) and the liver during obesity development. KrO treatment increased the concentrations of EPA and DHA and associated oxylipins, including 18-HEPE, RvE2 and 14-HDHA in eWAT and the liver. Simultaneously, KrO decreased arachidonic acid concentrations and arachidonic-acid-derived oxylipins (e.g., HETEs, PGD2, PGE2, PGF2 α, TXB2 ). In eWAT, KrO activated regulators of adipogenesis (e.g., PPARγ, CEBPα, KLF15, STAT5A), induced a shift towards smaller adipocytes and increased the total adipocyte numbers indicative for hyperplasia. KrO reduced crown-like structures in eWAT, and suppressed HFD-stimulated inflammatory pathways including TNFα and CCL2/MCP-1 signaling. The observed eWAT changes were accompanied by reduced plasma leptin and increased plasma adiponectin levels over time, and improved insulin resistance (HOMA-IR). In the liver, KrO suppressed inflammatory signaling pathways, including those controlled by IL-1β and M-CSF, without affecting liver histology. Furthermore, KrO deacti-vated hepatic REL-A/p65-NF-κB signaling, consistent with increased PPARα protein expression and a trend towards an increase in IkBα. In conclusion, long-term KrO treatment increased several anti-inflammatory PUFAs and oxylipins in WAT and the liver. These changes were accompanied by beneficial effects on general metabolism and inflammatory tone at the tissue level. The stimulation of adipogenesis by KrO allows for safe fat storage and may, together with more direct PPAR-mediated anti-inflammatory mechanisms, attenuate inflammatio

    Vasculoprotective effects of nutritional ingredients in LDLr-/-.Leiden mice.

    No full text
    <p>Albuminurea at 15 weeks (A) and Atherosclerosis (B) at 21 weeks of dietary interventions. Data are presented as mean ± SEM, n = 15. Significant diet effects are shown by *P<0.05 or **P<0.01 compared to HFD. Low Fat Diet; HFD = High Fat Diet + control gavage; HFD + nutritional ingredients (including eHC, ARA, DHA, and gavage with LGG).</p

    Cardioprotection via activation of protein kinase C-δ depends on modulation of the reverse mode of the Na+/Ca2+ exchanger

    No full text
    BACKGROUND - Pretreatment with the volatile anesthetic sevoflurane protects cardiomyocytes against subsequent ischemic episodes caused by a protein kinase C (PKC)-δ mediated preconditioning effect. Sevoflurane directly modulates cardiac Ca handling, and because Ca also serves as a mediator in other cardioprotective signaling pathways, possible involvement of the Na/Ca exchanger (NCX) in relation with PKC-δ in sevoflurane-induced cardioprotection was investigated. METHODS AND RESULTS - Isolated right ventricular rat trabeculae were subjected to simulated ischemia and reperfusion (SI/R), consisting of superfusion with hypoxic glucose-free buffer for 40 minutes after rigor development, followed by reperfusion with normoxic glucose containing buffer. Preconditioning with sevoflurane before SI/R improved isometric force development during contractile recovery at 60 minutes after the end of hypoxic superfusion (83±7% [sevo] versus 57±2% [SI/R];n=8; P<0.01). Inhibition of the reverse mode of the NCX by KB-R7943 (10 μmol/L) or SEA0400 (1 μmol/L) during preconditioning attenuated the protective effect of sevoflurane. KB-R7943 and SEA0400 did not have intrinsic effects on the contractile recovery. Furthermore, inhibition of the NCX in trabeculae exposed to sevoflurane reduced sevoflurane-induced PKC-δ translocation toward the sarcolemma, as demonstrated by digital imaging fluorescent microscopy. The degree of PKC-δ phosphorylation at serine as determined by western blot analysis was not affected by sevoflurane. CONCLUSIONS - Sevoflurane-induced cardioprotection depends on the NCX preceding PKC-δ translocation presumably via increased NCX-mediated Ca influx. This may suggest that increased myocardial Ca load triggers the cardioprotective signaling cascade elicited by volatile anesthetic agents similar to other modes of preconditioning
    corecore