50 research outputs found

    Nucleosome resection at a double-strand break during Non-Homologous Ends Joining in mammalian cells - implications from repressive chromatin organization and the role of ARTEMIS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>S. cerevisiae </it>mating type switch model of double-strand break (DSB) repair, utilizing the HO endonuclease, is one of the best studied systems for both Homologous Recombination Repair (HRR) and direct ends-joining repair (Non-Homologous Ends Joining - NHEJ). We have recently transposed that system to a mammalian cell culture model taking advantage of an adenovirus expressing HO and an integrated genomic target. This made it possible to compare directly the mechanism of repair between yeast and mammalian cells for the same type of induced DSB. Studies of DSB repair have emphasized commonality of features, proteins and machineries between organisms, and differences when conservation is not found. Two proteins that stand out that differ between yeast and mammalian cells are DNA-PK, a protein kinase that is activated by the presence of DSBs, and Artemis, a nuclease whose activity is modulated by DNA-PK and ATM. In this report we describe how these two proteins may be involved in a specific pattern of ends-processing at the DSB, particularly in the context of heterochromatin.</p> <p>Findings</p> <p>We previously published that the repair of the HO-induced DSB was generally accurate and occurred by simple rejoining of the cohesive 3'-overhangs generated by HO. During continuous passage of those cells in the absence of puromycin selection, the locus appears to have become more heterochromatic and silenced by displaying several features. 1) The site had become less accessible to cleavage by the HO endonuclease; 2) the expression of the puro mRNA, which confers resistance to puromycin, had become reduced; 3) occupancy of nucleosomes at the site (ChIP for histone H3) was increased, an indicator for more condensed chromatin. After reselection of these cells by addition of puromycin, many of these features were reversed. However, even the reselected cells were not identical in the pattern of cleavage and repair as the cells when originally created. Specifically, the pattern of repair revealed discrete deletions at the DSB that indicated unit losses of nucleosomes (or other protein complexes) before religation, represented by a ladder of PCR products reminiscent of an internucleosomal cleavage that is typically observed during apoptosis. This pattern of cleavage suggested to us that perhaps, Artemis, a protein that is believed to generate the internucleosomal fragments during apoptosis and in DSB repair, was involved in that specific pattern of ends-processing. Preliminary evidence indicates that this may be the case, since knock-down of Artemis with siRNA eliminated the laddering pattern and revealed instead an extensive exonucleolytic processing of the ends before religation.</p> <p>Conclusions</p> <p>e have generated a system in mammalian cells where the absence of positive selection resulted in chromatin remodeling at the target locus that recapitulates many of the features of the mating-type switching system in yeast. Specifically, just as for yeast HML and HMR, the locus had become transcriptionally repressed; accessibility to cleavage by the HO endonuclease was reduced; and processing of the ends was drastically changed. The switch was from high-fidelity religation of the cohesive ends, to a pattern of release of internucleosomal fragments, perhaps in search of micro-homology stretches for ligation. This is consistent with reports that the involvement of ATM, DNA-PK and Artemis in DSB repair is largely focused to heterochromatic regions, and not required for the majority of IR-induced DSB repair foci in euchromatin.</p

    Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis

    Get PDF
    Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5ā€²- and 3ā€²-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to Ī³-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent Ī³-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells

    Hyperketonemia (Acetoacetate) Upregulates NADPH Oxidase 4 and Elevates Oxidative Stress, ICAM-1, and Monocyte Adhesivity in Endothelial Cells

    No full text
    Background/Aims: The incidence of developing microvascular dysfunction is significantly higher in type 1 diabetic (T1D) patients. Hyperketonemia (acetoacetate, Ī²-hydroxybutyrate) is frequently found along with hyperglycemia in T1D. Whether hyperketonemia per se contributes to the excess oxidative stress and cellular injury observed in T1D is not known. Methods: HUVEC were treated with ketones in the presence or absence of high glucose for 24 h. NOX4 siRNA was used to specifically knockdown NOX4 expression in HUVEC. Results: Ketones alone or in combination with high glucose treatment cause a significant increase in oxidative stress, ICAM-1, and monocyte adhesivity to HUVEC. Using an antisense approach, we show that ketone induced increases in ROS, ICAM-1 expression, and monocyte adhesion in endothelial cells were prevented in NOX4 knockdown cells. Conclusion: This study reports that elevated levels of ketones upregulate NOX, contributing to increased oxidative stress, ICAM-1 levels, and cellular dysfunction. This provides a novel biochemical mechanism that elucidates the role of hyperketonemia in the excess cellular injury in T1D. New drugs targeting inhibition of NOX seems promising in preventing higher risk of complications associated with T1D

    Role of Hyperketonemia in Inducing Oxidative Stress and Cellular Damage in Cultured Hepatocytes and Type 1 Diabetic Rat Liver

    No full text
    Background/Aims: Type 1 diabetic (T1D) patients have a higher incidence of liver disease. T1D patients frequently experience elevated plasma ketone levels along with hyperglycemia. However, no study has examined whether hyperketonemia per se has any role in excess liver damage in T1D. This study investigates the hypothesis that hyperketonemia can induce oxidative stress and cellular dysfunction. Methods: STZ treated diabetic rats, FL83B hepatocytes, and GCLC knocked down (GSH deficient) hepatocytes were used. Results: The blood levels of ALT and AST, biomarkers of liver damage, and ketones were elevated in T1D rats. An increase in NOX4 and ROS along with a reduction in GSH and GCLC levels was observed in T1D rat livers in comparison to those seen in non-diabetic control or type 2 diabetic rats. MCP-1 and ICAM-1 were also elevated in T1D rat livers and ketone treated hepatocytes. Macrophage markers CCR2 and CD11A that interact with MCP-1, and ICAM-1 respectively, were also elevated in the T1D liver, indicating macrophage infiltration. Additionally, activated macrophages increased hepatocyte damage with ketone treatment, which was similar to that seen in GCLC knockdown hepatocytes without ketones. Conclusion: Hyperketonemia per se can induce macrophage mediated damage to hepatocytes and the liver, caused by GSH depletion and oxidative stress up regulation in T1D

    Platelet Metabolism and Other Targeted Drugs; Potential Impact on Immunotherapy

    No full text
    The role of platelets in cancer progression has been well recognized in the field of cancer biology. Emerging studies are elaborating further the additional roles and added extent that platelets play in promoting tumorigenesis. Platelets release factors that support tumor growth and also form heterotypic aggregates with tumor cells, which can provide an immune-evasive advantage. Their most critical role may be the inhibition of immune cell function that can negatively impact the bodyā€™s ability in preventing tumor establishment and growth. This review summarizes the importance of platelets in tumor progression, therapeutic response, survival, and finally the notion of immunotherapy modulation being likely to benefit from the inclusion of platelet inhibitors
    corecore