19 research outputs found

    Adhesion to the extracellular matrix is required for interleukin-1 beta actions leading to reactive phenotype in rat astrocytes

    Get PDF
    The extracellular matrix (ECM) of the brain is essential for homeostasis and normal functions, but is rapidly remodelled during acute brain injury alongside the development of an inflammatory response driven by the cytokine interleukin (IL)-1. Whether the ECM regulates IL-1 actions in astrocytes is completely unknown. The aim of this study was to test the hypothesis that cellular attachment to the ECM is a critical mediator of IL-1β-induced signalling pathways and development of reactive phenotype in astrocytes. Primary rat astrocytes adhered to fibronectin, laminin and fibrillin-1 in an integrin-dependent manner. Attachment to these ECM molecules significantly increased IL-1β-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and inhibition of RhoA and Rho kinase (ROCK), coincident with loss of focal adhesions and cellular morphological changes. Our data demonstrate that the ECM regulates IL-1 actions in astrocytes via cross-talk mechanisms between ERK1/2 and RhoA/ROCK, which could have important implications in brain inflammatory disorders

    The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro

    No full text
    BACKGROUND: The blood–brain barrier (BBB) of the central nervous system (CNS) is essential for normal brain function. However, the loss of BBB integrity that occurs after ischaemic injury is associated with extracellular matrix (ECM) remodelling and inflammation, and contributes to poor outcome. ECM remodelling also contributes to BBB repair after injury, but the precise mechanisms and contribution of specific ECM molecules involved are unknown. Here, we investigated the mechanisms by which hypoxia and inflammation trigger loss of BBB integrity and tested the hypothesis ECM changes could contribute to BBB repair in vitro. METHODS: We used an in vitro model of the BBB, composed of primary rat brain endothelial cells grown on collagen (Col) I-, Col IV-, fibronectin (FN)-, laminin (LM) 8-, or LM10-coated tissue culture plates, either as a single monolayer culture or on Transwell® inserts above mixed glial cell cultures. Cultures were exposed to oxygen-glucose deprivation (OGD) and/or reoxygenation, in the absence or the presence of recombinant interleukin-1β (IL-1β). Cell adhesion to ECM molecules was assessed by cell attachment and cell spreading assays. BBB dysfunction was assessed by immunocytochemistry for tight junction proteins occludin and zona occludens-1 (ZO-1) and measurement of trans-endothelial electrical resistance (TEER). Change in endothelial expression of ECM molecules was assessed by semi-quantitative RT-PCR. RESULTS: OGD and/or IL-1 induce dramatic changes associated with loss of BBB integrity, including cytoplasmic relocalisation of membrane-associated tight junction proteins occludin and ZO-1, cell swelling, and decreased TEER. OGD and IL-1 also induced gene expression of key ECM molecules associated with the BBB, including FN, Col IV, LM 8, and LM10. Importantly, we found that LM10, but not FN, Col IV, nor LM8, plays a key role in maintenance of BBB integrity and reversed most of the key hallmarks of BBB dysfunction induced by IL-1. CONCLUSIONS: Our data unravel new mechanisms of BBB dysfunction induced by hypoxia and inflammation and identify LM10 as a key ECM molecule involved in BBB repair after hypoxic injury and inflammation

    Precancerous Gastric Lesions with Helicobacter pylori vacA+/babA2+/oipA+ Genotype Increase the Risk of Gastric Cancer

    No full text
    Objective. The clinical outcomes of gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer have been attributed to the interplay of virulence factors of Helicobacter pylori (H. pylori), host genetic susceptibility, and host immune responses. This study investigated the presence of cagA, vacA, iceA2, babA2, and oipA genes and their association with clinical outcomes. Methods. Chronic gastritis, atrophic gastritis, and intestinal metaplasia specimens were obtained from patients who underwent endoscopy and surgical resection between January 2017 and December 2018; specimens from gastric cancer patients treated between January 2014 and December 2018 were also added. H. pylori infection and virulence genes (cagA, vacA, iceA2, babA2, and oipA) were determined using real-time PCR. The association between H. pylori genotypes and clinical outcomes were evaluated using multivariate regression model analysis. The overall survival of gastric cancer patients was compared between genotype combinations. Results. H. pylori was positive in 166 patients with chronic gastritis, precancerous gastric lesions, and gastric cancer. The genes vacA, babA2, and oipA were most prevalent in chronic gastritis (73%), precancerous gastric lesions (62%), and gastric cancer (91%), respectively. The vacA, babA2, and oipA genes were associated with increased risk of gastric cancer (OR = 1.23; 95% CI = 1.13–3.32; P=0.033, OR = 2.64; 95% CI = 1.44–4.82, P=0.024, and OR = 2.79; 95% CI = 1.58–5.41; P=0.031, respectively). Interestingly, H. pylori vacA+/babA2+/oipA+ genotype infection was associated with increased risk of gastric cancer (OR = 3.85, 95% CI = 1.67–5.77, P=0.014). Conclusion. In this present study, we reported on the virulence genes of H. pylori infection to reveal their association with increased risk of chronic gastritis, precancerous gastric lesions, and gastric cancer. Precancerous gastric lesions with H. pylori vacA+/babA2+/oipA+ genotype increased the risk of gastric cancer

    Expression of Cancer Stem Cell Marker CD44 and Its Polymorphisms in Patients with Chronic Gastritis, Precancerous Gastric Lesion, and Gastric Cancer: A Cross-Sectional Multicenter Study in Thailand

    No full text
    Here we investigated CD44 protein expression and its polymorphisms in patients with chronic gastritis, precancerous gastric lesions, and gastric cancer; and we evaluated our result with the risk of CD44 protein expression and clinicopathological characteristics. Our results obtained by analyzing 162 gastric cancer patients, 125 chronic gastritis, and 165 precancerous gastric lesions from three study centers in Thailand showed that CD44 expression was significantly higher in patients with precancerous gastric lesions and gastric cancer while patients with chronic gastritis were negative for CD44 staining (p=0.036). We further observed the significant association of variant genotype; gastric cancer patients carrying AG or GG of CD44 rs187116 had more increased risk of CD44 expression than wild-type (WT) carriers (AG: odds ratio (OR) = 5.67; 95% CI = 1.57–7.23; p=0.024 and GG: OR = 8.32; 95% CI = 2.94–11.42; p=0.016), but no significant difference in the risk of CD44 expression due to polymorphism in patients with precancerous gastric lesions. Our results suggested that CD44 expression could be used as a marker for the prediction of gastric cancer development, particularly in patients with precancerous gastric lesions carrying AG or GG, who were selected to surveillance follow-up for gastric cancer prevention
    corecore