307 research outputs found

    Dynamic characteristics of flow meters for fuel consumption measurement in ships

    Get PDF
    The dynamic characteristics of various flow meters for fuel consumption measurement aboard shipswere evaluated. The flow rate was measured using the Korea Research Institute of Standards and Science (KRISS) oil flow standard system using K-oil(density : 0.804 g/cm3, viscosity : 3.679 cSt), which has similar fluid properties as diesel oil. The flow meters were tested in a test bed that simulated the vibration conditions in ships. The vibration conditions were established in accordance to vibration standard IEC 60068-2-6 as follows: a±0.7g acceleration and 30 Hz frequency. The K-factors (mL/pulse) of various flow meters (PD meter, turbine flow meter, Coriolis flow meter, and ultrasonic flow meter) were obtained for various flow rates (60 L/h ~ 300 L/h). The PD meter, Coriolis flow meter, and ultrasonic flow meter were found to have almost constant Kfactors according to the flow rates. However, the K-factor of the turbine flow meter was reduced at a low flow rate owing to bearing friction in the turbine blade. The flow rate errors of the PD meter, Coriolis flow meter, and ultrasonic flow meter were found to be under ±0.5 % with and without vibration. However, the flow rate error of the turbine flow meter was approximately -4.3 % at a low flow rate (60 L/h) owing to the friction effect. The Coriolis flow meter had the lowest flow rate error (< 0.1%) according to the flow rate. The vibration influenced the flow rate error of the Coriolis flow meter at high flow rates owing to its measuring principle. However, the difference in flow rate errors was a negligible value (0.05 %) with and without vibration. Therefore, we confirmed that the PD meter, turbine meter, Coriolis flow meter and ultrasonic flow meter could be used for measuring flow rates in ships with a ±0.5 % flow rate error.Papers presented at the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Portoroz, Slovenia on 17-19 July 2017 .International centre for heat and mass transfer.American society of thermal and fluids engineers

    Magnetoresistance of Two-Dimensional Fermions in a Random Magnetic Field

    Get PDF
    We perform a semiclassical calculation of the magnetoresistance of spinless two-dimensional fermions in a long-range correlated random magnetic field. In the regime relevant for the problem of the half filled Landau level the perturbative Born approximation fails and we develop a new method of solving the Boltzmann equation beyond the relaxation time approximation. In absence of interactions, electron density modulations, in-plane fields, and Fermi surface anisotropy we obtain a quadratic negative magnetoresistance in the weak field limit.Comment: 12 pages, Latex, no figures, Nordita repor

    Quantum corrections to the conductivity of fermion - gauge field models: Application to half filled Landau level and high-TcT_c superconductors

    Full text link
    We calculate the Altshuler-Aronov type quantum correction to the conductivity of 2d2d charge carriers in a random potential (or random magnetic field) coupled to a transverse gauge field. The gauge fields considered simulate the effect of the Coulomb interaction for the fractional quantum Hall state at half filling and for the tJt-J model of high-TcT_c superconducting compounds. We find an unusually large quantum correction varying linearly or quadratically with the logarithm of temperature, in different temperature regimes.Comment: 12 pages REVTEX, 1 figure. The figure is added and minor misprints are correcte

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Lowest-Landau-level theory of the quantum Hall effect: the Fermi-liquid-like state

    Full text link
    A theory for a Fermi-liquid-like state in a system of charged bosons at filling factor one is developed, working in the lowest Landau level. The approach is based on a representation of the problem as fermions with a system of constraints, introduced by Pasquier and Haldane (unpublished). This makes the system a gauge theory with gauge algebra W_infty. The low-energy theory is analyzed based on Hartree-Fock and a corresponding conserving approximation. This is shown to be equivalent to introducing a gauge field, which at long wavelengths gives an infinite-coupling U(1) gauge theory, without a Chern-Simons term. The system is compressible, and the Fermi-liquid properties are similar, but not identical, to those in the previous U(1) Chern-Simons fermion theory. The fermions in the theory are effectively neutral but carry a dipole moment. The density-density response, longitudinal conductivity, and the current density are considered explicitly.Comment: 32 pages, revtex multicol

    Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity

    Get PDF
    Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity

    The Physics of Cluster Mergers

    Get PDF
    Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. Some of the basic physical properties of mergers will be discussed, with an emphasis on simple analytic arguments rather than numerical simulations. Semi-analytic estimates of merger rates are reviewed, and a simple treatment of the kinematics of binary mergers is given. Mergers drive shocks into the intracluster medium, and these shocks heat the gas and should also accelerate nonthermal relativistic particles. X-ray observations of shocks can be used to determine the geometry and kinematics of the merger. Many clusters contain cooling flow cores; the hydrodynamical interactions of these cores with the hotter, less dense gas during mergers are discussed. As a result of particle acceleration in shocks, clusters of galaxies should contain very large populations of relativistic electrons and ions. Electrons with Lorentz factors gamma~300 (energies E = gamma m_e c^2 ~ 150 MeV) are expected to be particularly common. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these mergers are described.Comment: 38 pages with 9 embedded Postscript figures. To appear in Merging Processes in Clusters of Galaxies, edited by L. Feretti, I. M. Gioia, and G. Giovannini (Dordrecht: Kluwer), in press (2001

    Simulation techniques for cosmological simulations

    Get PDF
    Modern cosmological observations allow us to study in great detail the evolution and history of the large scale structure hierarchy. The fundamental problem of accurate constraints on the cosmological parameters, within a given cosmological model, requires precise modelling of the observed structure. In this paper we briefly review the current most effective techniques of large scale structure simulations, emphasising both their advantages and shortcomings. Starting with basics of the direct N-body simulations appropriate to modelling cold dark matter evolution, we then discuss the direct-sum technique GRAPE, particle-mesh (PM) and hybrid methods, combining the PM and the tree algorithms. Simulations of baryonic matter in the Universe often use hydrodynamic codes based on both particle methods that discretise mass, and grid-based methods. We briefly describe Eulerian grid methods, and also some variants of Lagrangian smoothed particle hydrodynamics (SPH) methods.Comment: 42 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 12; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Observation of the Decays B0->K+pi-pi0 and B0->rho-K+

    Get PDF
    We report the observation of B^0 decays to the K^+pi^-pi^0 final state using a data sample of 78 fb^-1 collected by the Belle detector at the KEKB e^+e^- collider. With no assumptions about intermediate states in the decay, the branching fraction is measured to be (36.6^{+4.2}_{-4.3}+- 3.0)*10^-6.We also search for B decays to intermediate two-body states with the same K^+pi^-pi^0 final state. Significant B signals are observed in the rho(770)^- K^+ and K^*(892)^+pi^- channels, with branching fractions of (15.1^{+3.4+1.4+2.0}_{-3.3-1.5-2.1})* 10^-6 and (14.8^{+4.6+1.5+2.4}_{-4.4-1.0-0.9})* 10^-6, respectively. The first error is statistical, the second is systematic and the third is due to the largest possible interference. Contributions from other possible two-body states will be discussed. No CP asymmetry is found in the inclusive K^+pi^-pi^0 or rho^-K^+ modes, and we set 90% confidence level bounds on the asymmetry of -0.12<A_{CP}<0.26 and -0.18<A_{CP}<0.64, respectively.Comment: 18 pages, 7 figure

    Measurements of exclusive B_s^0 decays at the Y(5S) resonance

    Full text link
    Several exclusive Bs0B_s^0 decays are studied using a 1.86 fb-1 data sample collected at the Y(5S) resonance with the Belle detector at the KEKB asymmetric energy e^+ e^- collider. In the Bs0Dsπ+B_s^0 \to D_s^- \pi^+ decay mode we find 10 Bs0B_s^0 candidates and measure the corresponding branching fraction. Combining the B_s^0 -> D_s^{(*)-} \pi^+, B_s^0 -> D_s^{(*)-} \rho^+, B_s^0 -> J/\psi \phi and B_s^0 -> J/\psi \eta decay modes, a significant Bs0B_s^0 signal is observed. The ratio \sigma (e^+ e^- -> B_s^* \bar{B}_s^*) / \sigma (e^+ e^- -> B_s^{(*)} \bar{B}_s^{(*)}) = (93^{+7}_{-9} \pm 1)% is obtained at the Y(5S) energy, indicating that Bs0B_s^0 meson production proceeds predominantly through the creation of BsBˉsB^*_s \bar{B}^*_s pairs. The Bs0B_s^0 and BsB_s^* meson masses are measured to be M(B_s^0)=(5370 \pm 1 \pm 3)MeV/c^2 and M(B_s^*)=(5418 \pm 1 \pm 3)MeV/c^2. Upper limits on the B_s^0 -> \gamma \gamma, B_s^0 -> \phi \gamma, B_s^0 -> K^+ K^- and B_s^0 -> D_s^{(*)+} D_s^{(*)-} branching fractions are also reported.Comment: 9 pages, 5 figures, published in Phys. Rev. D76, 012002 (2007
    corecore