52,644 research outputs found
Decomposition of multicomponent mass spectra using Bayesian probability theory
We present a method for the decomposition of mass spectra of mixture gases
using Bayesian probability theory. The method works without any calibration
measurement and therefore applies also to the analysis of spectra containing
unstable species. For the example of mixtures of three different hydrocarbon
gases the algorithm provides concentrations and cracking coefficients of each
mixture component as well as their confidence intervals. The amount of
information needed to obtain reliable results and its relation to the accuracy
of our analysis are discussed
Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors
Nematic order resulting from the partial melting of density-waves has been
proposed as the mechanism to explain nematicity in iron-based superconductors.
An outstanding question, however, is whether the microscopic electronic model
for these systems -- the multi-orbital Hubbard model -- displays such an
ordered state as its leading instability. In contrast to usual electronic
instabilities, such as magnetic and charge order, this fluctuation-driven
phenomenon cannot be captured by the standard RPA method. Here, by including
fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its
nematic susceptibility and contrast it with its ferro-orbital order
susceptibility, showing that its leading instability is the spin-driven nematic
phase. Our results also demonstrate the primary role played by the
orbital in driving the nematic transition, and reveal that high-energy magnetic
fluctuations are essential to stabilize nematic order in the absence of
magnetic order.Comment: 8 pages, 6 figure
State space collapse and diffusion approximation for a network operating under a fair bandwidth sharing policy
We consider a connection-level model of Internet congestion control,
introduced by Massouli\'{e} and Roberts [Telecommunication Systems 15 (2000)
185--201], that represents the randomly varying number of flows present in a
network. Here, bandwidth is shared fairly among elastic document transfers
according to a weighted -fair bandwidth sharing policy introduced by Mo
and Walrand [IEEE/ACM Transactions on Networking 8 (2000) 556--567] []. Assuming Poisson arrivals and exponentially distributed document
sizes, we focus on the heavy traffic regime in which the average load placed on
each resource is approximately equal to its capacity. A fluid model (or
functional law of large numbers approximation) for this stochastic model was
derived and analyzed in a prior work [Ann. Appl. Probab. 14 (2004) 1055--1083]
by two of the authors. Here, we use the long-time behavior of the solutions of
the fluid model established in that paper to derive a property called
multiplicative state space collapse, which, loosely speaking, shows that in
diffusion scale, the flow count process for the stochastic model can be
approximately recovered as a continuous lifting of the workload process.Comment: Published in at http://dx.doi.org/10.1214/08-AAP591 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks
We have calculated the evolution of cosmic ray (CR) modified astrophysical
shocks for a wide range of shock Mach numbers and shock speeds through
numerical simulations of diffusive shock acceleration (DSA) in 1D quasi-
parallel plane shocks. The simulations include thermal leakage injection of
seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion
is assumed. We model shocks similar to those expected around cosmic structure
pancakes as well as other accretion shocks driven by flows with upstream gas
temperatures in the range K and shock Mach numbers spanning
. We show that CR modified shocks evolve to time-asymptotic states
by the time injected particles are accelerated to moderately relativistic
energies (p/mc \gsim 1), and that two shocks with the same Mach number, but
with different shock speeds, evolve qualitatively similarly when the results
are presented in terms of a characteristic diffusion length and diffusion time.
For these models the time asymptotic value for the CR acceleration efficiency
is controlled mainly by shock Mach number. The modeled high Mach number shocks
all evolve towards efficiencies %, regardless of the upstream CR
pressure. On the other hand, the upstream CR pressure increases the overall CR
energy in moderate strength shocks (). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10,
2005
An alternative formulation of classical electromagnetic duality
By introducing a doublet of electromagnetic four dimensional vector
potentials, we set up a manifestly Lorentz covariant and SO(2) duality
invariant classical field theory of electric and magnetic charges. In our
formulation one does not need to introduce the concept of Dirac string.Comment: 14 pages, no figures, Latex, minor corrections, references and
acknowledgements adde
Extracting CP violation and strong phase in D decays by using quantum correlations in psi(3770)-> D0\bar{D}0 -> (V1V2)(V3V4) and psi(3770)->D0\bar{D}0 -> (V1V2)(K pi)
The charm quark offers interesting opportunities to cross-check the mechanism
of CP violation precisely tested in the strange and beauty sectors. In this
paper, we exploit the angular and quantum correlations in the D\bar{D} pairs
produced through the decay of the psi(3770) resonance in a charm factory to
investigate CP-violation in two different ways. We build CP-violating
observables in psi(3770) -> D\bar{D} -> (V_1V_2)(V_3 V_4) to isolate specific
New Physics effects in the charm sector. We also consider the case of psi(3770)
-> D\bar{D} -> (V_1V_2)(K\pi) decays, which provide a new way to measure the
strong phase difference delta between Cabibbo-favored and doubly-Cabibbo
suppressed D decays required in the determination of the CKM angle gamma.
Neglecting the systematics, we give a first rough estimate of the sensitivities
of these measurements at BES-III with an integrated luminosity of 20 fb^-1 at
psi(3770) peak and at a future Super tau-charm factory with a luminosity of
10^35 cm^-2.s^-1.Comment: 13 pages
Cosmic Rays Accelerated at Cosmological Shock Waves
Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than similar to 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic mediumopen2
- âŠ