113 research outputs found

    Full-length genomic analysis of korean porcine sapelovirus strains.

    Get PDF
    Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, is associated with diarrhea, pneumonia, severe neurological disorders, and reproductive failure in pigs. However, the structural features of the complete PSV genome remain largely unknown. To analyze the structural features of PSV genomes, the full-length nucleotide sequences of three Korean PSV strains were determined and analyzed using bioinformatic techniques in comparison with other known PSV strains. The Korean PSV genomes ranged from 7,542 to 7,566 nucleotides excluding the 3' poly(A) tail, and showed the typical picornavirus genome organization; 5'untranslated region (UTR)-L-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3'UTR. Three distinct cis-active RNA elements, the internal ribosome entry site (IRES) in the 5'UTR, a cis-replication element (CRE) in the 2C coding region and 3'UTR were identified and their structures were predicted. Interestingly, the structural features of the CRE and 3'UTR were different between PSV strains. The availability of these first complete genome sequences for PSV strains will facilitate future investigations of the molecular pathogenesis and evolutionary characteristics of PSV

    Treatment of Two Level Artificial Disc Replacement for Cervical Spondylotic Myelopathy

    Get PDF
    Cervical spondylotic myelopathy (CSM) is a common spinal disorder caused by compression of the spinal cord, due to degeneration of the cervical spine. We investigated post-operative results and suggest artificial disc replacement (ADR) as an effective surgical method for treating CSM. We present the case of a 36-year-old man, with nuchal pain; severe paresthesia of both upper and lower extremities; and pain, motor weakness, and difficulty in fine motor control of both hands. A cervical X-ray showed spondylotic changes at the C5-6, C6-7 level and MRI revealed cord compression at the C5-6, C6-7 level. ADR was performed at the C5-6, C6-7 level. After the surgery, the motor weakness of both upper extremities and paresthesia of both aspects improved. In addition, the JOA score and Nurick grade improved. A post-operative X-ray showed well positioned instruments, and post- operative MRI displayed no lesions of cord compression. Anterior cervical discectomy and fusion (ACDF) is widely accepted as a leading treatment for CSM, but ACDF may cause adjacent segment disease (ASD). We suggest that ADR also can represent a good surgical procedure for the management of multilevel spinal cord compression, as it can preserve cervical motion while avoiding AS

    The seroprevalence of Japanese encephalitis virus in goats raised in Korea

    Get PDF
    Japanese encephalitis virus (JEV) causes a mosquito-borne viral zoonosis that is becoming increasingly important to public health in east and south Asia. Although JEV is primarily associated with reproductive failure in swine, JEV infection can cause fever and headache in humans and is associated with aseptic meningitis and encephalitis. The exact mode of transmission, including host range and possible source of viral amplification within livestock, is still not completely clear. This study consisted of a serological survey of JEV infection in goats. A total of 804 goat serum samples were collected from 144 farms in Korea between May 2005 and May 2006. The incidence of positive cases was 12.1% (97 out of 804 goats). The seroprevalence of JEV infection in the 144 farms screened was 31.3% (45/144), indicating that JEV infection is frequent in goat farms in Korea. In addition, three districts of Korea (mainly in the southern region) had a higher seroprevalence of JEV compared to other areas. The results suggest that goats could be monitored epidemiologically as a sentinel animal for JEV transmission in Korea

    DNA Methylation Patterns of Ulcer-Healing Genes Associated with the Normal Gastric Mucosa of Gastric Cancers

    Get PDF
    Recent evidence suggests that gastric mucosal injury induces adaptive changes in DNA methylation. In this study, the methylation status of the key tissue-specific genes in normal gastric mucosa of healthy individuals and cancer patients was evaluated. The methylation-variable sites of 14 genes, including ulcer-healing genes (TFF1, TFF2, CDH1, and PPARG), were chosen from the CpG-island margins or non-island CpGs near the transcription start sites. The healthy individuals as well as the normal gastric mucosa of 23 ulcer, 21 non-invasive cancer, and 53 cancer patients were examined by semiquantitative methylation-specific polymerase chain reaction (PCR) analysis. The ulcer-healing genes were concurrently methylated with other genes depending on the presence or absence of CpG-islands in the normal mucosa of healthy individuals. Both the TFF2 and PPARG genes were frequently undermethylated in ulcer patients. The over- or intermediate-methylated TFF2 and undermethylated PPARG genes was more common in stage-1 cancer patients (71%) than in healthy individuals (10%; odds ratio [OR], 21.9) and non-invasive cancer patients (21%; OR, 8.9). The TFF2-PPARG methylation pattern of cancer patients was stronger in the older-age group (≥55 yr; OR, 43.6). These results suggest that the combined methylation pattern of ulcer-healing genes serves as a sensitive marker for predicting cancer-prone gastric mucosa

    DNA Methylation and Expression Patterns of Key Tissue-specific Genes in Adult Stem Cells and Stomach Tissues

    Get PDF
    CpG-island margins and non-island-CpG sites round the transcription start sites of CpG-island-positive and -negative genes are methylated to various degrees in a tissue-specific manner. These methylation-variable CpG sites were analyzed to delineate a relationship between the methylation and transcription of the tissue-specific genes. The level of tissue-specific transcription was estimated by counting the number of the total transcripts in the SAGE (serial analysis of gene expression) database. The methylation status of 12 CpG-island margins and 21 non-island CpG sites near the key tissue-specific genes was examined in pluripotent stromal cells obtained from fat and bone marrow samples as well as in lineage-committed cells from marrow bulk, stomach, colon, breast, and thyroid samples. Of the 33 CpG sites examined, 10 non-island-CpG sites, but none of the CpG-island margins were undermethylated concurrent with tissue-specific expression of their nearby genes. The net methylation of the 33 CpG sites and the net amount of non-island-CpG gene transcripts were high in stomach tissues and low in stromal cells. The present findings suggest that the methylation of the non-island-CpG sites is inversely associated with the expression of the nearby genes, and the concert effect of transitional-CpG methylation is linearly associated with the stomach-specific genes lacking CpG-islands

    The overmethylated genes in Helicobacter pylori-infected gastric mucosa are demethylated in gastric cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transitional-CpG sites between weakly methylated genes and densely methylated retroelements are overmethylated in the gastric mucosa infected with <it>Helicobacter pylori </it>(<it>H. pylori</it>) and they are undermethylated in the gastric cancers depending on the level of loss of heterozygosity (LOH) events. This study delineated the transitional-CpG methylation patterns of CpG-island-containing and -lacking genes in view of the retroelements.</p> <p>Methods</p> <p>The transitional-CpG sites of eight CpG-island-containing genes and six CpG-island-lacking genes were semi-quantitatively examined by performing radioisotope-labelling methylation-specific PCR under stringent conditions. The level of LOH in the gastric cancers was estimated using the 40 microsatellite markers on eight cancer-associated chromosomes. Each gene was scored as overmethylated or undermethylated based on an intermediate level of transitional-CpG methylation common in the <it>H. pylori</it>-negative gastric mucosa.</p> <p>Results</p> <p>The eight CpG-island genes examined were overmethylated depending on the proximity to the nearest retroelement in the <it>H. pylori</it>-positive gastric mucosa. The six CpG-island-lacking genes were similarly methylated in the <it>H. pylori</it>-positive and -negative gastric mucosa. In the gastric cancers, long transitional-CpG segments of the CpG-island genes distant from the retroelements remained overmethylated, whereas the overmethylation of short transitional-CpG segments close to the retroelements was not significant. Both the CpG-island-containing and -lacking genes tended to be decreasingly methylated in a LOH-level-dependent manner.</p> <p>Conclusions</p> <p>The overmethylated genes under the influence of retroelement methylation in the <it>H. pylori</it>-infected stomach are demethylated in the gastric cancers influenced by LOH.</p

    Porcine Sapelovirus Uses α2,3-Linked Sialic Acid on GD1a Ganglioside as a Receptor.

    Get PDF
    UNLABELLED: The receptor(s) for porcine sapelovirus (PSV), which causes diarrhea, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs, remains largely unknown. Given the precedent for other picornaviruses which use terminal sialic acids (SAs) as receptors, we examined the role of SAs in PSV binding and infection. Using a variety of approaches, including treating cells with a carbohydrate-destroying chemical (NaIO4), mono- or oligosaccharides (N-acetylneuraminic acid, galactose, and 6'-sialyllactose), linkage-specific sialidases (neuraminidase and sialidase S), lectins (Maakia amurensislectin andSambucus nigralectin), proteases (trypsin and chymotrypsin), and glucosylceramide synthase inhibitors (dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and phospholipase C), we demonstrated that PSV could recognize α2,3-linked SA on glycolipids as a receptor. On the other hand, PSVs had no binding affinity for synthetic histo-blood group antigens (HBGAs), suggesting that PSVs could not use HBGAs as receptors. Depletion of cell surface glycolipids followed by reconstitution studies indicated that GD1a ganglioside, but not other gangliosides, could restore PSV binding and infection, further confirming α2,3-linked SA on GD1a as a PSV receptor. Our results could provide significant information on the understanding of the life cycle of sapelovirus and other picornaviruses. For the broader community in the area of pathogens and pathogenesis, these findings and insights could contribute to the development of affordable, useful, and efficient drugs for anti-sapelovirus therapy. IMPORTANCE: The porcine sapelovirus (PSV) is known to cause enteritis, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs. However, the receptor(s) that the PSV utilizes to enter host cells remains largely unknown. Using a variety of approaches, we showed that α2,3-linked terminal sialic acid (SA) on the cell surface GD1a ganglioside could be used for PSV binding and infection as a receptor. On the other hand, histo-blood group antigens also present in the cell surface carbohydrates could not be utilized as PSV receptors for binding and infection. These findings should contribute to the understanding of the sapelovirus life cycle and to the development of affordable, useful and efficient drugs for anti-sapelovirus therapy.This study was supported by Wellcome Trust (097997/Z/11/Z) and a grant from Basic Science Research Program through the National Research Foundation of Korea (NRF). This study was also supported by Bio-industry Technology Development Program through the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (iPET) funded by the Ministry of Agriculture, Food and Rural Affairs, and Chonnam National University (2013). IG is a Wellcome Senior Fellow supported by the Wellcome Trust (097997/Z/11/Z).This is the final version of the article. It first appeared from the American Society for Microbiology via http://dx.doi.org/10.1128/JVI.02449-1

    Porcine sapovirus Cowden strain enters LLC-PK cells via clathrin- and cholesterol-dependent endocytosis with the requirement of dynamin II.

    Get PDF
    Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules

    Pathogenesis of Korean SapelovirusA in piglets and chicks.

    Get PDF
    Sapelovirus A (SV-A), formerly known as porcine sapelovirus as a member of a new genus Sapelovirus, is known to cause enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in pigs. We have recently identified α2,3-linked sialic acid on GD1a ganglioside as a functional SV-A receptor rich in the cells of pigs and chickens. However, the role of GD1a in viral pathogenesis remains elusive. Here, we demonstrated that a Korean SV-A strain could induce diarrhoea and intestinal pathology in piglets but not in chicks. Moreover, this Korean SV-A strain had mild extra-intestinal tropisms appearing as mild, non-suppurative myelitis, encephalitis and pneumonia in piglets, but not in chicks. By real-time reverse transcription (RT) PCR, higher viral RNA levels were detected in faecal samples than in sera or extra-intestinal organs from virus-inoculated piglets. Immunohistochemistry confirmed that high viral antigens were detected in the epithelial cells of intestines from virus-inoculated piglets but not from chicks. This Korean SV-A strain could bind the cultured cell lines originated from various species, but replication occurred only in cells of porcine origin. These data indicated that this Korean SV-A strain could replicate and induce pathology in piglets but not in chicks, suggesting that additional porcine-specific factors are required for virus entry and replication. In addition, this Korean SV-A strain is enteropathogenic, but could spread to the bloodstream from the gut and disseminate to extra-intestinal organs and tissues. These results will contribute to our understanding of SV-A pathogenesis so that efficient anti-sapelovirus drugs and vaccines could be developed in the future.This study was supported by a grant (2014R1A2A2A01004292) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning, Bio-industry Technology Development Program (315021-04) through the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (iPET) funded by the Ministry of Agriculture, Food and Rural Affairs, and Korea Basic Science Institute grant (C33730), Republic of Korea. IG is a Wellcome Senior Fellow supported by the Wellcome Trust (097997/Z/11/Z). Chonnam National University provided funding to Mun-Il Kang (2012). The Mab against SV-A capsid protein was received as a generous gift from Dr. M. Dauber (Friedrich-Loeffler Institute, Germany).This is the accepted version of the article. The final version is available from the Microbiology Society via http://dx.doi.org/10.1099/jgv.0.00057
    • …
    corecore