147 research outputs found
Association between lifestyle factors and plasma adiponectin levels in Japanese men
BACKGROUND: Adiponectin is an adipocyte-specific protein that plays a role in obesity, insulin resistant, lipid metabolism, and anti-inflammation. Hypoadiponectinemia may be associated with a higher risk for type 2 diabetes and cardiovascular disease. Some studies suggest that adiponectin levels are modulated by lifestyle factors, but little is known about the associations between lifestyle factors and plasma adiponectin levels in Japanese people. We therefore investigated the associations between lifestyle factors and plasma adiponectin levels in general Japanese men. METHODS: The subjects were 202 Japanese male workers who participated in an annual health check. They provided details about anthropometrical data, blood collection, their use of prescribed medication, and the clinical history of their families. They also completed a self-administered questionnaire about their lifestyles. RESULTS: Subjects with plasma adiponectin levels below 4.0 μg/ml had significantly lower levels of HDL cholesterol and higher levels of BMI, SBP, DBP, total cholesterol, FBG, and platelets than did subjects with higher adiponectin levels. In multiple logistic regression after multiple adjustment, a plasma adiponectin level below 4.0 μg/ml was significantly associated with smoking (odds ratio [OR] = 2.08, 95% confidence interval [CI] = 1.01–4.30), a daily diet rich in deep-yellow vegetables (OR = 0.25, 95% CI= 0.07–0.91), frequent eating out (OR = 2.45, 95% CI = 1.19–5.08), and physical exercise two or more times a week (OR = 0.21, 95% CI = 0.06–0.74). CONCLUSION: Our findings show that adiponectin levels in general Japanese men are independently related to smoking, dietary factors, and physical exercise. We think that lifestyle habits might independently modulate adiponectin levels and that adiponectin might be the useful biomarker helping people to avoid developing type 2 diabetes and cardiovascular disease by modifying their lifestyles
Achievements and new knowledge unraveled by metagenomic approaches
Metagenomics has paved the way for cultivation-independent assessment and exploitation of microbial communities present in complex ecosystems. In recent years, significant progress has been made in this research area. A major breakthrough was the improvement and development of high-throughput next-generation sequencing technologies. The application of these technologies resulted in the generation of large datasets derived from various environments such as soil and ocean water. The analyses of these datasets opened a window into the enormous phylogenetic and metabolic diversity of microbial communities living in a variety of ecosystems. In this way, structure, functions, and interactions of microbial communities were elucidated. Metagenomics has proven to be a powerful tool for the recovery of novel biomolecules. In most cases, functional metagenomics comprising construction and screening of complex metagenomic DNA libraries has been applied to isolate new enzymes and drugs of industrial importance. For this purpose, several novel and improved screening strategies that allow efficient screening of large collections of clones harboring metagenomes have been introduced
A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags
<p>Abstract</p> <p>Background</p> <p>Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. <it>Panagrolaimus superbus </it>is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that <it>P. superbus </it>uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis.</p> <p>Results</p> <p>To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of <it>P. superbus</it>. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at <url>http://www.nematodes.org/nembase4/species_info.php?species=PSC</url>. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from <it>P. superbus</it>. Notable among those is a putative lineage expansion of the <it>lea </it>(late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific <it>sxp/ral-2 </it>family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from <it>Phytophthora infestans</it>. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This <it>P. superbus </it>sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants <it>glutathione peroxidase, dj-1 </it>and <it>1-Cys peroxiredoxin</it>, an <it>shsp </it>sequence and an <it>lea </it>gene.</p> <p>Conclusions</p> <p><it>P. superbus </it>appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of <it>lea </it>genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of <it>P. superbus</it>.</p
Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology
Thiazide diuretics, commonly used antihypertensives, may cause QT interval (QT) prolongation, a risk factor for highly fatal and difficult to predict ventricular arrhythmias. We examined whether common single-nucleotide polymorphisms (SNPs) modified the association between thiazide use and QT or its component parts (QRS interval, JT interval) by performing ancestry-specific, transethnic and cross-phenotype genome-wide analyses of European (66%), African American (15%) and Hispanic (19%) populations (N = 78 199), leveraging longitudinal data, incorporating corrected standard errors to account for underestimation of interaction estimate variances and evaluating evidence for pathway enrichment. Although no loci achieved genome-wide significance (P < 5 x 10(-8)), we found suggestive evidence (P < 5 x 10(-6)) for SNPs modifying the thiazide-QT association at 22 loci, including ion transport loci (for example, NELL1, KCNQ3). The biologic plausibility of our suggestive results and simulations demonstrating modest power to detect interaction effects at genome-wide significant levels indicate that larger studies and innovative statistical methods are warranted in future efforts evaluating thiazide-SNP interactions
Recommended from our members
Proliferation of phytohemagglutinin - stimulated human lymphocytes in culture
- …