755 research outputs found

    Supersonic quasi-axisymmetric vortex breakdown

    Get PDF
    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated

    Three dimensional steady and unsteady asymmetric flow past wings of arbitrary planforms

    Get PDF
    The nonlinear discrete vortex method was extended to treat the problem of asymmetric flows past a wing with leading-edge separation, including steady and unsteady flows. The problem was formulated in terms of a body-fixed frame of reference, and the nonlinear discrete vortex method was modified accordingly. Only examples of flows past delta wings are presented. Comparison of these results with experimental results for a delta wing undergoing a steady rolling motion at zero angle of attack demonstrates the superiority of the present method in obtaining highly accurate loads. Numerical results for yawed wings at large angles of attack are also presented. In all cases, total load coefficients, pressure distributions and shapes of the free-vortex sheets are shown

    Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    Get PDF
    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations

    Application of the nonlinear vortex-lattice concept to aircraft-interference problems

    Get PDF
    A discrete-vortex model was developed to account for the hazardous effects of the vortex trail issued from the edges of separation of a large leading wing on a small trailing wing. The model is divided into three main parts: the leading wing and its near wake, the near and far wakes of the leading wing, and the trailing wing and the portion of the far wake in its vicinity. The normal force, pitching moment, and rolling moment coefficients for the trailing wing are calculated. The circulation distribution in the vortex trail is calculated in the first part of the model where the leading wing is far upstream and hence is considered isolated. A numerical example is solved to demonstrate the feasibility of using this method to study interference between aircraft. The numerical results show the correct trends: The following wing experiences a loss in lift between the wing-tip vortex systems of the leading wing, a gain outside this region, and strong rolling moments which can change sign as the lateral relative position changes. All the results are strongly dependent on the vertical relative position

    Unsteady flow past wings having sharp-edge separation

    Get PDF
    A vortex-lattice technique is developed to model unsteady, incompressible flow past thin wings. This technique predicts the shape of the wake as a function of time; thus, it is not restricted by planform, aspect ratio, or angle of attack as long as vortex bursting does not occur and the flow does not separate from the wing surface. Moreover, the technique can be applied to wings of arbitrary curvature undergoing general motion; thus, it can treat rigid-body motion, arbitrary wing deformation, gusts in the freestream, and periodic motions. Numerical results are presented for low-aspect rectangular wings undergoing a constant-rate, rigid-body rotation about the trailing edge. The results for the unsteady motion are compared with those predicted by assuming quasi-steady motion. The present results exhibit hysteretic behavior

    Numerical simulation of steady and unsteady asymmetric vortical flow

    Get PDF
    The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds

    Recent advances in numerical simulation and control of asymmetric flows around slender bodies

    Get PDF
    The problems of asymmetric flow around slender bodies and its control are formulated using the unsteady, compressible, thin-layer or full Navier-Stokes equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. The problem is numerically simulated for both locally-conical and three-dimensional flows. The numerical applications include studies of the effects of relative incidence, Mach number and Reynolds number on the flow asymmetry. For the control of flow asymmetry, the numerical simulation cover passive and active control methods. For the passive control, the effectiveness of vertical fins placed in the leeward plane of geometric symmetry and side strakes with different orientations is studied. For the active control, the effectiveness of normal and tangential flow injection and surface heating and a combination of these methods is studied

    Characteristics Of The Marble Industry In Egypt: Structure, Conduct, And Performance

    Get PDF
    This paper analyzes marble extraction and production in Egypt from an applied industrial economics point of view. The marble industry in Egypt could be a promising sector if regulated properly. Market structure, conduct and performance is analyzed including degree of differentiation, nature of competition, barriers to entry, and needed regulations. Technically, production matches increasing returns of a Cobb Douglas form while cost structure follows declining average cost with entry . Factor inputs in production are non-complementary with $1000 of capital substitutable by 7.5 units of labor. Efficiency concerns necessitate deep technological segmentation with declining profitability. Critically needed regulations are related to technological use in extraction and labor allocation in production. For higher efficiency, the industry should become more capital intensive even though the Egyptian economy is undeniably labor abundant

    Combined homotopy and neighboring extremal optimal control

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137623/1/oca2253_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137623/2/oca2253.pd
    corecore