research

Three dimensional steady and unsteady asymmetric flow past wings of arbitrary planforms

Abstract

The nonlinear discrete vortex method was extended to treat the problem of asymmetric flows past a wing with leading-edge separation, including steady and unsteady flows. The problem was formulated in terms of a body-fixed frame of reference, and the nonlinear discrete vortex method was modified accordingly. Only examples of flows past delta wings are presented. Comparison of these results with experimental results for a delta wing undergoing a steady rolling motion at zero angle of attack demonstrates the superiority of the present method in obtaining highly accurate loads. Numerical results for yawed wings at large angles of attack are also presented. In all cases, total load coefficients, pressure distributions and shapes of the free-vortex sheets are shown

    Similar works