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ABSTRACT

An extensive computational study of supersonic quasi-
axisymmetric vortex breakdown in a configured circu-
lar duct is presented. The unsteady, compressible, full

Navier-Stokes (NS) equations are used for the present
computational study. The NS equations are solved for
quasi-axisymmetric flows using an implicit, upwind, flux-

difference splitting, finite-volume scheme. The quasi-
axisymmetric solutions are time accurate and are obtained

by forcing the components of the flowfield vector to be
equal on two axial planes, which arc in close proximity of
each other. The computational study addresses the effect
of the Reynolds number, for laminar flows, on the evo-

lution and persistence of vortex breakdown. The effect
of boundary conditions at the duct exit on vortex break-
down is also studied. Finally, the effect of swirl ratio at

the duct inlet is investigated.

Introduction

The majority of the experimental studies of vortex

breakdown phenomenon has been focused on incompress-
ible flows in pipes z-s. Two main types of vortex break-

down have been documented experimentally: the quasi-
axisymmetric bubble type and the asymmetric spiral type.
Other types of vortex breakdown were also generated in

pipes.

The major effort of numerical study of vortex break-
down flows, has also been focused on incompressible,
quasi-axisymmclric isolated vortices. Gmbowsld and
Berger 6 were the first to use the incompressible, quasi-
axisymmetrie NS equations to study isolated vortex flow

in an.unbouaded region. Hafez, el. al7 solved the incom-
pressible, steady, quasi-axisymmetric Eulet and NS equa-
tions using the stream function-vorticity formulation for

isolated vortex flows. They predicted vortex breakdown
flows similar to those of Garbowski and Berger. Salas

and Kuruvila s solved the unsteady, quasi-axisymmctric
NS equations in a straight circular pipe. They oh-
mined steady, multiple bubble-type vortex breakdown for

a Reynolds number range of 100-1,800. Menne 9 has also
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used the stream function-vorticity formulation for study-

ing unsteady, incompressible quasi-axisymmetric isolated
vortex flows. Wu and Hwang 1° used the stream function-
vorticity formulation to study quasi-axisymmetric vortex

breakdown in a pipe. Their study focused on the effects
of inflow, wall boundary conditions and Reynolds num-
ber on breakdown structure. They showed that the evo-
lution of breakdown can be steady, periodic or unsteady

depending on the inflow velocity profiles and Reynolds
number. Menne and Liu H integrated the laminar, in-

compressible, NS equations for the breakdown of a vor-
tex in a slightly diveiging pipe. They showed break-
down flow cases which are based on the purely quasi-

axisymmelric and non-axisymmetric analyses. The re-

sults were in good agreement with the experimental re-
suits of Leibovich 4. Spall, et. all2 used the vorticity-
velocity formulation of the incompressible NS equations

to study the three-dimensional vortex breakdown. Breuer
and H_nel _3solved the unsteady incompressible NS equa-
tions using a dual-time stepping, upwind scheme to study

the temporal evolution of the three-dimensional vortex
breakdown. In Refs. 12 and 13, both types of breakdown;
the bubble type and the spiral type, were predicted. Re-

views of the physical and computational aspects of the in-

compressible vortex breakdown were presented by Krause
in Refs. 14 and 15. One of the most important aspect
of vortex breakdown which Krause discusses in Ref. 15

is the effect of side boundary conditions on the up- or
downstream motion of the breakdown point. Also, he

presents alternative outflow boundary conditions.

Transonic and supersonic flows around highly swept
wings and slender wing-body configurations at moderate

to high angles of attack am characmriz_ by interacting
vortex cot_ and shock waves. Other applications which
encounter vortex-shock interaction include a supersonic

inlet ingesting a vortex and injection of a swirling fuel jet
into a supea-sonic eombustor to enhance mixing between
thC a_r stream and _ fuel 16"1|. In all these applications
vortex breakdown due to the interaction of a longitudi-

hal vortex and a shock wave may occur or is intended

to occur. For such problems, computational schemes are
needed to study, predict and control vortex-shock inter-
action including vortex breakdown. Unfortunately, the

literalme lacks this type of analysis with the exception

o.
Cpe'g , cry, , "
Kandi121 and Meadows, Kumea and Hussuini 22.
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The first time-accurate NS solution for a supersonic
vortex breakdown was developed by the present au-

thors in Ref. 23. They considered a supersonic quasi-

axisymmetric vortex flow in a configured circular duct.
The time-accurate solution of the unsteady, compress-
ible NS equations was obtained using an implicit, up-
wind, flux-difference splitting finite-volume scheme. A
shock wave has been generated near the duct inlet and

unsteady vortex breakdown has been predicted behind
the shock. The predicted flow was characterized by the
evolution, convection and shedding of vortex breakdown
bubbles. The Euler equations were also used to solve the

same problem. The Euler solution showed larger size and
number of vortex-breakdown bubbles in comparison with
those of the NS solutions. The time-accurate solution was

carried out for 3,200 time steps which are equivalent to

a dimensionless time of 16. Only one value of Reynolds
number of 10,000 was considered in Ref. 23.

In the present paper, we expand our study of this
flow using time-accurate computations of the NS equa-

t.ions with a fine grid in the shock-vortex interaction re-
gion and for long computational times. Several issues are
addressed in the present study. First, we show the effect

of Reynolds number on the temporal evolution and per-
sistence of vortex-breakdown bubbles behind the shock.

In this stage of computations, the conditions at the down-

stream exit are obtained by extrapolating the components
of the flowfield vector from the interior cell centers. Al-

though the flow is supersonic over a large portion of the
duct exit, subsonic flow exists over a small portion of the
exit around the duct centerline. Therefore, selected flow

cases have been recomputed using a Riemann-invarient-
type boundary conditions at subsonic points of the duct
exit. Finally, the effect of swirl ratio at the duct inlet has

been investigated.

Formulation

The conservative form of the dimensionless, un-
steady, compressible, full NS equations in terms of time-
independent, body-conformed coordinates _1,_2 and _3

is given by

+0g.. O(E,)j=0;m=l_S,s=l_3 (1)

where

_= = C (xa, x2, x3) (2)

= i = [p'pu,,pu,,pu,,m]* O)

E= - inviscid flux

]'= i °_=Ek
!

= _[pU=, pu, U= + 0,_=p, pu_U=

+02_'*p, pu_U= + 03_=p, (m + p)U=]* (4)

(E,.), = viscous and heat,--conduction flux in _'
direction

= _[o, _,_'_,, ok¢,_3,

o_'(u_%,-q_)]t; k-l-3, n-l-3 (5)

U= = _=Uk (6)

The first element of the three momentum elements of Eq.

(5) is given by

M_/_ [( 2 0 .,._._'_Ouk_= Re - )

s n (gUl

0ke (7)

The second and third elements of the momentum elements

are obtained by replacing the subscript I, everywhere in
Eq. (7), with 2 and 3, respectively. The last element of

Eq. (5) is given by

2 ,- ,\ 0Uk
)

- s n _Up

1 ,0(a_)_

"_(7-I)P r_'f "ff_-] ;P = 1-3
(8)

The reference parameters for the dimensionless form
of the equations are L, a_, L/a_, p_ and poc for the

length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re
p_V_L/I_, where L is the initial radius of the vor-
tea or the duct inlet radius. The pressure, p, is related

to the total energy pet unit mass and density by the gas
equation

p=(7-1)p[e -1 _(u l+u]+u])] (9)

The viscosity is calculated from the Suthcrland law

#=a s/ _ ,C=0.4317 0o)

and the Prandtl number P_ = 0.72. In Eqs. (1)-(8), the
indicial notation is used for convenience.
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Computational Scheme

The Computational scheme used to solve the un-

steady, compressible full NS equations is an implicit.
upwind, flux-difference splitting, finite-volume scheme.

It employs the flux-difference splitting scheme of Roe
which is based on the solution of the approximate one-

dimensional Ricmann problem in each of the three di-
rections. In the Roe scheme, the inviscid flux differ-

ence at the interface of a computational cell is split into

left and right flux differences. The splitting is accom-
plished according to the signs of the eigenvalues of the
Roe averaged-Jacobian matrix of the inviscid flux at the
cell interface. The smooth limiter is used to eliminate os-

cillations in the shock region. The viscous and heat-flux
terms are linearized and the cross-derivative terms of the

viscous Jacobians are dropped in the implicit operator.
These terms are differenced using secord-order spatially
accurate central differencing. The resulting difference

equation is approximately factored and is solved in three
sweeps in the _1,¢2 and _3 directions. The scheme is
used for third-order spatial accuracy and first-order tem-

poral accuracy. The scheme is coded in the computer
program which is called "FTNS3D'.

Computational Study and Discussion

Figure 1 shows a configured circular duct which con-
sists of a short, straight cylindrical part at the inlet which

is followed by a short divergent cylindrical part until the
axial length of 0.74. The divergence angle is 6*. The duct
radius is then kept constant and a convergent-divergent
nozzle with a throat radius of 0.95 is attached. The duct

exit radius is 0.98 and its total length is 2.9. The diver-
gent part of the duct ensures the stability of the formed
shock in the inlet region. The configuration of the duct
is intended to ensure that the supersonic inflow will be-

come supersonic at the exit. As the computations will
show, a small portion of the duct exit near its center-
line becomes subsonic at certain times for the specified
inflow conditions.

This configured duct has also been used by Delery, eL
all 6 for their Euler equations computations of supersonic

vortex breakdown in an attempt to compotationally model
an experimental set up. It should be pointed here that

the Euler equations, used by Delcry, et. al, assume
isenthalpic flow in order to drop the energy equation.
This is a serious approximation since the upstream flow

is rotational. Moreover, as our present calculations show,
the flow is actually unsteady and hence, the isenthalpic

assumption is not valid.

The NS solver is used to compote all the following

flow eases by using a grid of 221x51 on two axial planes,
where 221 points are in the axial direction and 51 points
are in the radial direction. In the inlet region up to
the 0.74 axial station, 100 grid points are used and the

remaining 121 points are used in the remaining part of
the duct. The grid is also clustered at the centerline (CL)

and the wall. The minimum radial grid size at the CL is

0.002. The two axial planes are spaced circumferentially

at a certain angle so that the aspect ratio of the minimum
grid size will be less than 2. The upstream Mach number

is kept at 1.75 and the Reynolds number is varied from
2,000 up to 100,000. The initial profile for the tangential

velocity is given by

w =k_ 1-exp - (11)
U_ r

where U_ = 1.74, r= = 0.2 and k¢ = 0.1. The maximum

_ddthe,swirl ratio/3, is at r = 0.224. The radial velocity, v,
initial station is set equal to zero and the radial

momentum equation is integrated to obtain the initial
pressure profile. Finally, the density p is obtained from
the definition of the speed of sound for the inlet flow.

With these compatible set of profiles, the computations
are carded out accurately in time with At = 0.0025.

The wall boundary conditions follow the typical Navier-
Stokes solid-boundary conditions. These computations
have been carried out on the CRAY YMP of the NASA

Langley Research Center. The CPU time is 40/_s/grid

point/iteration for the NS calculation.

Next, we present the results of the computational
study which covers the effects of Reynolds number, the
exit boundary conditions and the inlet swirl ratio.

Effect of Reynolds Number
For these flow cases, the Reynolds number values are
2,000; 4,000; 10,000; 20,000 and 100,000. The swirl

ratio, 3, is kept fixed at 0.32. The exit boundary condi-
tions are obtained by extrapolation from the interior cell
centers.

Re = 2,000
Figure 2 shows the streamlines and Mach contours for
thisflow case at t = 11, which is equivalent to 4,400

time steps. No vortex breakdown develops and the Mach
contotws show a steady shock at the duct inlet. The shock
is a normal shock over most of the duct inlet. The flow

at the duct exit is supersonic.

Re = 4,000

Figure3 shows snapshotsof the streamlinesand Mach
contours for the flow case of Re = 4,000. For this

value of Reynolds number a single breakdown bubble is
seen at t = 5 and it is eonvected downs_reams as time

passes. This breakdown bubble is formed during the
downstream motion of the inlet shock, which reaches its

maximum downsn_can displacement at t = 5. Later on,
the shock moves upstream, as it is seen at t = 8, while
the breakdown bubble is eonvected in the downstream

direction. Thereafter, the shock stays stationary at the

inlet. This swirling flow ease shows a transient single
breakdown flow. It should be noticed that at t = 5 a

small portion of the duct exit at its centerline becomes

subsonic. At t = 8, it expands radially to about 25% of
the duct exit radius.

Re = 10,000
Figures 4 and 5 show snapshots of the su'earnlines and
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Mach contours for the flow case of Re = 10,0(30. At

t = 3, a single breakdown bubble is formed behind the
downstream moving shock. In this range of t = 3-5, the

bubble grows in all directions while the shock moves
downstreams. In the time range of t = 6-8, the break-

down bubble splits into two bubbles which are convected
as they diffuse in the downstream direction. The inlet
shock moves upstreams during this time range. During
the time range of t = 9-12, the inlet shock slightly oscil-
lates at the duct inlet while a new breakdown bubble is

formed behind the shock. As the bubble size and strength
increase, the inlet shock moves very slowly downstrearns.
More breakdown bubbles (three bubbles) are formed as
seen at t = 17. The breakdown bubbles are then con-

vected downstreams (t = 19) while the inlet shock again

moves upstreams. As the most downstream bubble is
shed through the totally supersonic exit, the inlet shock
slowly moves downstreams. In the time range t = 22-
33, the shock keeps its slow downstream motion until it

becomes stationary. During this dme, downstream shed-
ding of breakdown bubbles continues and the formation

of new breakdown bubbles slows down until it stops when
the inlet shock becomes stationary. Thereafter, no break-
down bubbles are formed and the flow becomes steady.

This swirfing flow case shows a transient multi-bubble
breakdown flow.

Re = 20,000

Figures 6 and 7 show snapshots of the streamlines and
Mach contours for the flow case of Re = 20,000. The

mechanism of evolution, convection and shedding of the
vortex-breakdown bubbles while the inlet shock is mov-

ing downstrcams, then upstrcarns and finally downswearns
to become stationary is very similar to the previous case
of Re = 10,000. However there are some few differences.

First, the size, number and strength of breakdown bubbles
are larger than those of the ease of Re = 10,000. Second,

the displacements of the inlet shock are larger than those
of the case of Re = 10,000. Third, the transient time of the
multi-bubble breakdown is longer than that of the case of
Re = 10,000. The reader can easily compare the snapshots
of the stz_anlines and Maeh contours of the two cases at

exactly the same time instants. Again this swirling flow
case shows a transient multi-bubble breakdown flow.

Re -- 100,000
Figures 8 and 9 show snapshots of the streamlines and

Mach contours for the flow case of Re = 100,000. It
should be noted that the radial extension of the shown

streamlines snapshots is r = 0.6, which is larger than
those of Re = 2,000 - 20,000. Again the mechanism of

evolution, convection and shedding of the vortex break-
down bubbles up to t = 30 is very similar to the previous
flow cases of Re = 10,000 and 20,000. It is noticed that

the size, number and strength of breakdown bubbles are
larger than those of the previous cases. Moreover, it is

noticed here that short periodic evolution, merging, con-
vection and shedding cycles of the bt'eakdown bubbles
occur, e.g.; the time periods of 16-21, 22-27 and 28-32.

At t = 33 and beyond, a new mode of evolution, convec-

tion and shedding of the breakdown bubbles occurs. It
should be noticed that the inlet shock keeps on moving

slowly in the downstream direction and another shock,
which is downstream of the inlet shock, does not extend

to the duct axis and is first seen at t = 30, also keeps on
moving in the downstream direction. During the motion

of these shocks a breakdown bubble grows behind the
inlet shock and sheds a breakdown bubble in the down-

stream direction. At t = 61, the downstream bubble grows

up in size and strength. Later on, the upstream breakdown
bubble also grows up in size and strength. The upstream
breakdown bubble becomes larger and stronger than the
downstream bubble, and the downstream bubble is con-

vected through the duct exit at t = 78. Next the upstream
breakdown bubble is convected downstreams and new

breakdown bubbles appear behind the inlet shock. In the
time range of t = 84-95, the mechanism of the evolution,
merging, convection and shedding which is similar to that

in the time range of t = 24-35 is repeated. In the time
range of t = 96-120, the flow is similar to that of the time

range of t = 37-78. At t = 123 and beyond, the whole
process of vortex-breakdown-bubbles evolution, merging,
convection and shedding is repeated. It is seen that the

snapshots of streamlines at t = 124 and 130 are exactly
similar to those at t = 3 and 17. Therefore, it is concluded
that the vortex-breakdown mechanism for this flow case is

periodic with a long period of time. Within this long cy-
cle, short periodic cycles of vortex-breakdown develops.

In summary, this flow case shows that several periodic
modes of vortex breakdown develop, which correspond
to different frequencies.

Effect of Exit Boundary Conditions

The Mach contours of the previous cases show that
varying small portions of the duct exit become subsonic.

Hence, extrapolating the components of the flowtield vec-
tot" from the interior cell centers for the duct exit boundary
conditions is mathematically improper when it is viewed
through the behavior of the characteristics at subsonic

points. However, such boundary conditions could repre-
sent typical physical conditions. Therefore, it is decided
to examine the effect of using the Riemarm-invariant-type
boundary conditions at the subsonic points. This requires
that four variables are extrapolated from the interior cell

centers while the fifth must be specified at the exit. We
chose to specify the pressure at the duct exit at the sub-

sonic points.

For the flow case of Re = 100,000, we specified

the exit pressure Pb = P,¢ at the subsonic points. This

type of boundary condition is enforced at t = 45 of the
previous flow ease (the solution of previous case at t
= 45 serves as initial condition for the present case).
Thereafter, the dine-accurate integration with this type

of boundary co,utition is continued. Figure 10 shows
snapshots of the streamlines and Mach contours of this
case. Although the solutions of this case in the time range
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of t = 46-61 is very similar to those of the previous case,

a completely different flow for this case develops as of
t = 63. The two breakdown bubbles which are seen at

t = 61 start moving in the downstream direction. They
are continuously convected without any new generation
of breakdown bubbles until they are completely shed

through the small subsonic portion of the duct exit. In
the meantime, the inlet shock disappears and the flow
becomes supersonic throughout the duct.

Figures 11 and 12 show the results for Re = 20,000

with Pb =Po¢ and Pb = 2Po_, respectively. At t = 5,
the breakdown bubble is exactly the same for these two
cases, as it is seen from the streamline figures and the
Mach- contour figures as well. At this instant of time,

these solutions are the same as those of Fig. 6. It is
obvious that the exit boundary conditions has not yet
affected the upstream breakdown bubble. At the advanced
time instants t = 18-20, we can see substantial differences

between the solutions at each time instant of Figures 11,
12 and 6.

Thus, it is concluded that the exit boundary condi-
tions have a substantial effect on the mechanism of break-

down bubbles evolution, merging, convection and shed-
ding. In particular, the solutions which are based on the
Riemann-invariant-type boundary conditions are depen-

dent upon the specified value of the pressure. It should
be noted here that the Riemann-invariant-type boundary
conditions, as it is well known is one dimensional and is

based on inviscid analysis. Although the duct-exit flow
is neither one-dimensional nor inviscid, the Riemann-

invariant-type-boundary conditions are the best available

non-reflective boundary conditions. Therefore, the ques-
tion remains: what is the proper type of exit boundary
condition that one needs to apply? Refer to Krause Is for

discussion on alternative boundary conditions.

Effect of The Inlet Swirl Ratio

In this flow ease, the Reynolds number is kept at
100,000 and the inlet swirl ratio is increased to 0.38.

Figure 13 shows snapshots of the streamlines and Math

contours up to t = 30. Comparing the results of the present
flow case with those of _ ffi 0.32, Figs. 8 and 9, we
notice that the breakdown bubbles are larger and stronger.
Moreover, in the time range of t = 17-30. the breakdown
bubbles are oscillating around a mean position and a

process of bubble generation, convection and shedding is
taking place around a large Ixeakdown bubble. The inlet
shock has a very small amplitude oscillation around a
mean position. This is a completely different mechanism

from that of the ease of Figs. 8 and 9. The computations
of this flow case have not yet been carried out further
in time.

Concludin 8 Remarks

The unsteady, compressible NS equations are used

for extensive computational study of supersonic quasi-

axisymmetric vortex breakdown in a configured circular
duct. The quasi-axisymmetrie solutions are time accu-
rate. Several issues have been addressed in this paper.

First, we have shown the effect of Reynolds number on
the evolution, merging convection and shedding of vortex
breakdown bubbles. Several modes of vortex breakdown

have been obtained; a wansient single-bubble breakdown,
a Wansient multi-bubble breakdown and an unsteady peri-
odic multi-bubble breakdown. These solutions have been

obtained by using extrapolated flow conditions from the
interior cell centers at the duct exit. Next, selected flow

cases have been recomputed using a Riemann-invariant-

type boundary conditions at the subsonic points of the
duct exit. It has been shown that substantial different

solutions have been obtained and the question of what

is the proper type of exit boundary conditions remains
to be answered. Finally, the effect of the inlet swirl ra-

tio has been investigated for the high Reynolds-number
flow. It has been shown that a completely different mech-
anism of vortex breakdown develops at advanced time

instants. Work is underway to understand this mode of
vortex breakdown.
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Figure 1. Typical grid for a supersonic configured
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Figure 2. Streamlines and Mach contours for a swirling flow
without breakdown, Moo = 1.75,fl = 0.32,

r = 0.49 a_ = 2,000.
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Figure 3. Streamlines and Mach contours for a swirling flow

with a transient breakdown, Moo = 1.75, fl = 0.32,

Re = 4,000.

Figure 4. Streamlines for a swirling flow with transient

multi-bubble breakdowns, Moo --=1.75,/_ = 0.32,

Re = 10,000.
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multi-bubble breakdowns, Moo = 1.75, _ = 0.32,

Re = 10,000.
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Figure 6. Streamlines for a swirling flow with transient
multi-bubble breakdowns, Moo = 1.75, B = 0.32,

Re = 20,000.
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Abstract

The unsteady, compressible thin-layer and full
Navier-Stokes equations are used to numerically simu-
late steady and unsteady asymmetric, supersonic, locally-
conical flows around a 5°-semiapex angle circular cone.
The main computational scheme used for the present com-
putations is the implicit, upwind, flux-difference splitting,
finite-volume scheme. Comparisons of the solutions us-
ing the two sets of equations are presented for the flow
asymmetry and its control. Computational studies are
also presented to investigate the effects of the freestream
Reynolds number and the locally-scaled Reynolds number
on the flow asymmetry. These studies are carried out us-
ing the full Navier-Stokes equations. Three-dimensional,
asymmetric flow solutions are also presented for a 5*-
semiapex angle cone of unit length and a cone-cylinder
configuration. The three-dimensional solutions are ob-
tained by using the thin-layer equations and short-duration
transient side-slip disturbances along with a very fine grid.

Introduction

Highly swept, round and sharp-leading-edge wings
and pointed slender bodies are common aerodynamic
components to fighter aircraft and missiles. The study
of vortex-dominated flow around these isolated aerody-
namic components adds to our basic understanding of vor-
tical flows under various conditions including unsteady
vortex-dominated flows, vortex-shock interaction, asym-
metric vortex flow and vortex lxeakdown. In this paper,
we focus on the problem of asymmetric vortex flow about
slender bodies in the high AOA range. The problem is
of vital importance to the dynamic stability and control-
lability of missiles and fighter aircraft.

The onset of flow asymmetry occurs when the relative
incidence (ratio of angle of attack to nose semiapex angle)
of pointed fccebodies exceeds certain critical values. At
these critical values of relative incidence, flow asymmetry
develops due to natural and/or forced disturbances. The
origin of natural disturbances may be a lransient side slip,
an acoustic disturbance, or likewise disturbance of short
duration. The origin of forced dist_s is geometric
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perturbations due to imperfections in the nose geometric
symmetry or likewise disturbances of permanent nature.
In addition to the relative incidence as one of the deter-

minable parameters for the onset of flow asymmetry, the
freestream Mach number, Reynolds number and shape of
the body-cross sectional area are important determinable
parameters.

Kandil, Wong and Liu _ used the unsteady, thin-layer
Navier-Stokes equations along with two different implicit
schemes to simulate asymmetric vortex flows around
cones with different cross-section shapes. The numer-
ical investigation was focused on a 5°-semiape x angle
circular cone and local conical flow was assumed. The

firstcomputational scheme was an implicit, upwind, flux-
difference splitting, finite-volume scheme and the sec-
ond one was an implicit, central-difference, finite-volume
scheme. Keeping the Mach number and Reynolds num-
ber constants at 1.8 and 105, respectively, the angle of
attack was varied from 10. to 30*. At oc= 10% a steady
symmetric solution was obtained and the results of the
two schemes were in excellent agreement. At _ = 20°
and irrespective of the type or level of the disturbance, a
steady asymmetric solution was obtained and the results
of the two schemes were in excellent agreement. Two
types of flow disturbances were used; a random round-
off error or a random truncation-error disturbance and a

controlled transient side-slip disturbance with short du-
ration. For the controlled transient side-slip disturbance,
the solution was unique, and for the uncontrolled random
disturbance, the solution was also unique with the excep-
tion of having the same asymmetry changing sides on the
cone. At _ = 30*, an unsteady asymmetric solution with
vortex shedding was obtained, and the vortex shedding
was perfectly periodic. Next, the angle of attack was
kept fixed at 20* and the Mach number was increased
from 1.8 to 3.0 with a step of 0.4. The solutions showed
that the asymmetry become weaker as the Mach number
is increased. The flow recovered its symmetry when the
Mach number reached 3.0. Selected solutions of steady
and unsteady asymmetric flows have also been presented
for cones with elliptic and diamond cross-sectional areas.
Passive control of the flow asymmetry has been tenta-
tively demonstrated by using a fin on the leeward side of
the body along the plane of geometric symmetry.

Siclari l used the unsteady, Navier-Stokes equa-

tions with a multi-grid, central-difference, finite-volume
scheme to solve for steady asymmetric conical flows



around cones with elliptic, diamond and biparabolic sec-
tions. He addressed steady-flow problems similar to those
of the present authors in reference 1. He considered the

flow around circular cones with semiapex angles of 5°,

6 °, 7 ° and 8° at an angle of attack of 20 ° and a Reynolds
number of l0 s. Varying the Mach number from 1.4 to 3.0

with a step of 0.4, he showed that the flow recovered its

symmetry as the Mach number increased. The higher the
semiapex angle was, the lower the Mach number

for the flow to recover it symmetry. Fixing the Mach

number at 1.8, the angle of attack at 20 ° , the Reynolds
number at los and the semi,apex angle at 5 ° , he decreased

the cross-section fineness ratio (ratio of width to length)
for different cross-sectional shapes. He showed that the

flow recovered its symmetry at a fineness ratio of 0.4 for
the elliptic-section cone, at 0.6 for the biparabolic-section
cone and at 0.6 for the diamond-section cone.

In a very recent paper by Kandil, Wong, and Liu 3,
several issues related to the asymmetric flow solutions

have been addressed. It has been shown that a unique
asymmetric flow solution is obtained irrespective of the
size of the minimum grid spacing at the solid boundary.
The asymmetry could reverse sides due to the random
nature of the disturbance. It has been also shown that
for the same flow conditions and same section fineness

ratio, diamond-section cones with sharp edges have less
flow asymmetry than those of the elliptic-section cones.
Moreover, it has been shown that passive control of flow

asymmetry of diamond-section cones requires fin heights
that are not necessarily equal to the local section width.

On the other hand, passive control of flow asymmetry
of circular and elliptic-section cones requites fins with
heights that are, at least, equal to the local section width.

Again, it was also shown that unsteady periodic asym-

metric flow with vortex shedding has been predicted.

In reference 4 by Kandil, Wong and Liu, several

unsteady, asymmetric vortex flows with periodic vortex

shedding for circular and noncircular section cones using
the thin-layer Navier-Stokes equations were pre,sented and
studied. In reference 5 by Kandil, et. al, the authors

addressed the problem of asymmetric flow control using

side strakes and the thin-layer Naviet-Stolr_ equations.
Two asymmetric flow eases have also been solved using
the full Navier-Stokes equations.

In the present paper, we address several issues related
to the flow asymmetry around circular cones. Under

the locally-conical flow assumption, steady and unsteady
asymmetric solutions using the thin-layer and full Navier-

Stokes equations are l_sented and compared. Also,
controlof flow asymmetry using verticalfinsand side
strakes ate covered. The solutions for the controlcase,s

are carried out using the thin-layer and full Naviex-Stokes
equations and their results are compared and discussed.

Next, the effect of the fre.eslream Reynolds number on
the flow asymmetry is studied under the locally-conical

flow assumption using the full Navier-Stokes equations.
This is achieved by keeping the axial station, at which the

locally-comcai solution is obtained, constant at the value

of unity and changing the Reynolds number. The effect
of scaled Reynolds number (Reynolds number based on

the local axial station) on the flow asymmetry is also
studied using the full Navier-Stokes equations. This is

achieved by reducing the axial station and accordingly
scaling the Reynolds number, the cross-section diameter,

the grid fineness and the computational domain. Finally,
three-dimensional flow asymmetry is investigated around

a circular cone and a cone-cylinder configuration using
the thin-layer Navier-Stokes equations. The purpose of
this study is obtain flow asymmetry due to short-duration

disturbances and to investigate the effect of Reynolds

number, angle of attack and the cylinder afterbody on
the flow asymmetry.

Formulation

Full and Thin.Layer Navier-Stokes Equations

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations in terms of
time-independent, body-conformed coordinates _t _2 and
_3 is given by

Ot + 0_ m 0_ o =0; m=l-3, s= I-3 (I)

where

{" = _=(xL, x.,, x3) (2)

el 1
= _ = pu3,pu,,pu. , (3)

I_,. - inviscidflux

i =Ek
a
i

= _LoU=,puiU,,+ O_=p, pu_.U=

+_=p, pu3U= + 03{_*p, (pc + p)U=]' (4)

(_:,.), _= viscous and heat-conduction flux in
direction

= j[O, a,{'-,,, _'-,a, ad'-,a,

o_,_'(u,r_-qk)]'; k=l-3, n=l-3 (5)

U. = _'*Uk (6)

The firstelementof thethreemomentum elementsof Eq.

(5)isgiven by

1
s n 0Ul (7)

o_-j

M
t

I

Im

Ig

N

m

n

m

10

B

W

J

!

m

w

I

l

J

m
V

Z

!

U

m

w

g

m
m

E
ug



t

_=.-

_v

r

L_

W

_2

L

The second and third elements of the momentum elements

are obtained by replacing the subscript 1, everywhere in
Eq. (7), with 2 and 3, respectively. The last element of
Eq. (5) is given by

M_u [(o%d,op_°0k_S(Uprkp -- qk) --= Re

upy_-
0Up

1 ,a(a'_)l
;p= 1-3 (8)

The single thin-layer approximations of the full Navier-
Stokes equations demand that we only keep the deriva-
tives in the normal direction to the body, _2, in the viscous
and heat flux terms in Eqs. (1), (7) and (8). Thus, we let

s = 2 for the term _ in Eq. (1) and s = 2 and n = 2
in Eqs. (7) and (8). These equations reduce to

o-T+ OC' o_: = 0 (9)

(  0u,)

o%,C_(%n,p- _) - -_ {,kW

Flo,:
+ u]+ u])

"_(7 -'i)Pr 0C" J (ll)

where

1 ;ks_Out W = O_,_u_, (12)
_l = _,_l_,_._,_ = 3 _.-. a_i'

The reference parameters for the dimensionless form
of the equations are L, a_, L/a_, p_ and /J_ for the
length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re =
p_V_L/I_, where L is the body length, and the pres-
sure, p, is related to the total energy per unit mass and
density by the gas equation

p= - i)p - + + ul) (13)

The viscosityiscalculatedfromtheSuthcrland law

/2( 1+C )= T3 _ ,C = 0.4317 04)

and thePrandtlnumber P,: 0.72.In Eqs.(I)-(12),the
indicialnotationisusedforconvenience.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented.
They include inflow-outflow conditions and solid-
boundary conditions. At the plane of geometric symme-
try, periodic conditions are used for symmetric or asym-
metric flow applications on the whole computational do-
main (right and left domains). At the farfield inflow
boundaries freestream conditions are specified since we
are dealing with supersonic flows, while at the far-field
outflow boundaries first-order extrapolation from the in-
terior points is used. On the solid boundary, the no-slip
and no-penetration conditions are enforced; u_ = u2 = u3
= 0 and the normal pressure gradient is set equal to zero.
For the temperature, the adiabatic boundary condition is
enforced on the solid boundary.

For the passive control applications using vertical
fins, double thin-layer Navier-Stokes equations are used,
where one thin-layer is used normal to the body and
another thin-layer is used normal to the fin surface. For
these applications, solid-boundary conditions are enforced
on both sides of the fin.

The initial conditions correspond to the uniform flow
withui= u2 = u_: 0 on thesolidboundary.

Computational Scheme

The main computational scheme used to solve the
thin-layer and full Navier-Stokes equations is an implicit,
upwind, flux-difference splitting, finite-volume scheme.
It employs the flux-difference splitting scheme of Roe.

The Jacobian matrices of the inviscid fluxes, A_ = _'_a'°c.
s = 1-3, are split into backward and forward fluxes ac-
cording to the signs of the eigenvalues of the inviscid
Jacobian matrices. Flux limiters are used to eliminate os-
cillations in the shock region. The viscous and heat-flux
terms are centrally differenced. The resulting difference
equation is solved using approximate factorization in the
_, _2 and g_ directions. The resulting computer program
can be used to solve the thin-layer Navier-Stokes equa-
tions and the full Navier-Stokes equations. This code
is a modified version of the CFL3D which is currently
called "FTNS3D". In this code, the implicit, flux-vector
splitting, finite-volume scheme, which is based on the
Van-Leer scheme s, can also be used instead of the flux-
difference splitting scheme.

Computational Applications and Discussions

I. Locally.Conkal Asymmetric Flow Applications

Locally-conical solutions of the thin-layer or full

Navier-Stokes equations are obtained using one of two
methods. In the first method, the governing equations



are transformed using the conical-coordinate transforma-
tion. Invoking the conical flow conditions which re-

quire that the flow variables be independent of the ra-
dial distance (or axial distance, depending on the trans-

formation) from the cone vertex, equating the radial dis-
tance (or axial distance) which appears in the transformed
equations to a constant (equals to unity in most of the

present locally-conical solutions), the resulting equations
are solved on one spherical (or cross-flow) surface. In the
second method, the three-dimensional flow equations are

solved on two spherical (or cross-flow) surfaces which
are located in the very near proximity of a constant radial

(or axial) distance. During the psuedo-time or accurate-

time stepping, the flowfield vector is forced to be equal at
the corresponding grid centers on the two surfaces. This
method is used in the present paper to obtain locally-

conical solutions. The resulting solutions from these two
methods are the same locally-conical solutions. These

solutions correspond to the specified radial (or axial) dis-
tance and hence they change as we change the radial (or

axial) distance. The reason behind that is simply because
the transformed equations, according to the first method,
are not self-similar and hence they are not globally coni-

cal. This is shown below by developing the transformed
equations of the first method. Considering the unsteady,
compressible, Navier-Stokes equations in the Cartesian
coordinates,

Oq + O(E- E,.)_ = 0 ;i= 1 - 3 (i5)
at ax_

introducing the conical coordinates,

X 1 X",

,Tt :-- r_ :---: ,7_=xixi (16)
X3 ' X3 '

and using the chain rule, Eq. (15) is transformed to

,73aq a - E,.),+ a - g_)2ma-T+ - -

( =o (x7)
where

m = _/1 + r/_ + r/I, El = El - rhEs, g'2

= E - ,72E3, E3 = E3 + rhEl + r_Fa,

[ = E3,E,.l= E,i - thE,3, E,,2

= E. - r_E.3,E.3 = E.3 + thE.,+ r/2Ev_,

i,. = I_,.3 (is)

The conical flow condition requires the flow variables be

independent of the coordinate _ (radial distance). Invok-
ing this condition in Eq. (17) by dropping the derivatives
with respect to r/3, Eq. (17) reduces to

+ 0 _ + - + L) = 0
(19)

It is obvious that the unsteady term includes r_. More-

over, the viscous terms 0_,_, _ and L include r_, and

hence Eq. (19) is not self-stmilar. The explicit depen-
dence of the viscous terms on '73 can be shown through
one of the elements of these vectors. For example, we
consider

-7\Tx +-$}'y+ az/-,7_\az + ax/

_M.m a [#((__'7_)au_IL,73 Orb O_l

Thus, the unsteadyterm and viscousterms arescaledby

the radialdistancer/3and Eq. (19) does not representa

globally-conical flow. The best to be done to make use
of this equation is to select a constant value for 03, and

solve the resulting equation for what we call "locally-
conical flow". If _ is assigned another constant value, the

resulting equation will have another scale for the unsteady
term and viscous terms. It is concluded that Eq. (19)

becomes globally conical if the unsteady term and viscous
terms vanish, and hence only the steady Euler equations
are globally conical,

Next, we present comparison of the solutions using
the thin-layer and full Navier-Stokes equations. We also

present steady flow solutions using different Reynolds
numbers keeping W = 1 and steady solutions using '73
= 0.5, 0.25, 0.I and R, = 50,000; 25,000; 10,000; re-

s'pectively.

Steady Asymmetric Flow (a = 20", M_ = 1.8, R, = 10_)

Supersonic flow around a 5°-semiape x angle circular
cone at 20* angle of attack, freesu'eam Mach number
of 1.8 and Reynolds number of 105 is considered. The

thin-layer and full Navier-Stokes equations are used to
solve for asymmetric flow on a grid of 161 x81 points in
the circumferential and normal directions, respectively.

The grid is generated by using a modified Joukowski

transformation with a geometric series for grid C!UStering
in the normal direction. The minimum grid spacing in
the normal direction at the solid boundary is 10 -_. The

maximum radius of the computational domain is 21 r,
where r is the i'adius of the circular cone at the axial

station of unity. Figure 1 shows the results of thin-
layer solution. The color graphics figure shows six snap
shots for the evolution of the steady asymmetric solution

during 10,000 iteration steps. The number from 1-6 on
the total-pressure-loss contours correspond to the number
from 1-6 on the logarithmic residual-iterations curve. It

is seen that the solution is symmetric during the first 3000
iteration when the residual drops to machine zero (No. 1).

Then, the solution becomes slightly asymmetric as the

residual grows up (Nos. 2, 3). As the residual drops
again to machine zero, the flow asymmeu'y becomes

strong until it reaches to the stable asymmetric solution

_--_=
I

i

w

g

i

J

U ¸

q_

!

l

I

II

z

J

!

v

I

z

U

ql

m

m



(Nos..1,5, 6). The final total-pressure-loss contour and

the corresponding surface-pressure coefficient are also
shown.

The full Navier-Stokes solution is shown in Fig. 2.

The residual-error drops 4.5 orders of magnitude in 2,000
steps, increases one order of magnitude after a total of
3,000 steps and then drops to machine zero in a total

number of iteration steps of 6,000. It is clear that the
full Navier-Stokes equations produce the asymmetric so-

lution faster than the thin-layer Navier-Stokes equations.

The total-pressure-loss contours show that the full Navier-
Stokes solution produces thicker shear layers than those

of the thin-layer solution. More contour resolution in the
vortex cores is produced by the full Navier-Stokes so-

lutions than that of the thin-layer solution. Finally, the
free-shear layer on the body right-side of the full Navier-

Stokes solution is shorter than that of the thin-layer so-

lution. However, the Cp figures of the two solutions are
exactly the same.

Asymmetric Flow Control Using Vertical
Fins (h = 0.Sr, h = r)

Figures 3 and 4 show comparisons of the thin-layer
and full Navier-Stokes solutions for the control of the

flow of the preceding case. Two vertical fins of heights h
= 0.5r and r are placed in the leeward plane of geometric

symmetry, where r is the cone local radius. Figures 3 and
4 show the total-pressure-loss contours and the surface-
pressure coefficient. The thin-layer solutions ate shown
on the left and the full Navier-Stokes solutions are shown

on the right. With h = 0.5r and using the thin-layer

equations, two vortex cores which are connected to each
other and to the body through free-shear layers, develop

from the left side of the body. From the right side of
the body, a free-shear layer develops and crosses over

the fin to the left side of the body. It produces two
vortex cores; one at each comer of the body-fin juncture
with secondary separation below them. This case has

been solved accurately in time but it does not show any
vortex shedding or unsteadiness. When the fin height is
increased to h = r, perfect flow symmetry is obtained.

With h = 0.5r and using the full Navier-gtokes equa-

tions, a mirror image of the v_-tex system and flow sepa-
rations of the thin-layer solutions is obtained. This is due
to the random nature of the dimabanee. However, the

freeshear layer and vortex cores on the right are thicker
and shorter in height than those of the thin-layer solution.

However, the Cp coefficients of the two sets of equations
are exact mirror image of each other. With h = r, the full
Navier-Stokes equations produce the exact same solution

as that of the thin-layer equations. The reason behind the
flow asymmetry with h = 0.5r is that the flee-shear layer
from the right-hand side of the body is still higher than
the fin height, which allows the flow disturbances from

the right and left side to interact.

Asymmetric Flow Control Using Side
Strakes (h = 0.3r)

Figure 5 shows a comparison of the thin-layer and
full Navier-Stokes solutions for the control of the flow

of the case of Fig. 1. Side strakes of height h = 0.3r,
when r is thelo_al radius of the cone, are used for this

purpose. The grid used is generated using a hyperbolic
grid generator with transfinite grid interpolation to refine

the grid at the strake sharp edge. While the thin-layer
solution shows perfect symmetric flow, the full Navier-

Stokes solution shows slightly asymmetric flow. This
can be seen by comparing both the total-pressure-loss

contours and the surface-pressure coefficient of the two
solutions. Both solutions are obtained using a grid of

161x81 with the same transfinite interpolation. Both
surface-pressure coefficients show a jump in the pressure

value at the leading edges of the strakes. It should be
noted that side-strakes produce higher lift than that of the
vertical fin control.

Unsteady Asymmetric Flow (_ = 30*, Moc
= 1.8, R, = 10s)

Figures 6 and 7 show comparisons of the full Navier-
Stokes solutions and the thin-layer solutions for unsteady

asymmetric flow with vortex shedding. The solutions
are obtained by using the full Navier-Stokes equations

with a grid of 161x81 and the flux difference splitting
(FDS) scheme, thin-layer equations with a grid of 161 x 81
and the FI)S scheme, thin-layer equations with a grid
of 161x81 and the flux-vector splitting (FVS) scheme,

and full Navier-Stokes equations with a grid of 241 x81

and the FDS scheme. Typical of all the four solutions,
the residual error curves show a drop in the error fol-

lowed by a transient response and ending by a periodic
response. The lift coefficient curves show the final peri-

odic response. The first three solutions exactly show the
same number of time steps (At = 10-3) of 700 for one-half
of the cycle of vortex shedding. The full Navier-Stokes

solution on the fine grid (Fig. 7) shows a slightly bigger
number of time steps (At = 10 -3) of 725 for one-half of

the cycle of vortex shedding. This is expected of the full

Navier-Stokes equations on the fine grid since the flow
has more real damping and viscous-force resolution than
the other three solutions. In the fourth case, the damping

will elongate the period of shedding and hence it reduces
the frequency of shedding. The frequency of shedding
of the first three solutions is 4.488 and the frequency of

shedding of the fourth solution is 4.333.

Asymmetric Flow Control Using a Vertical Fin 0a = r)

Figure 8 shows the full Navier-Stokes solution of
asymmetric flow control using a vertical fin of h -- r. This
is the flow considered in the preceding case. It is seen

that the vertical fin height is not enough to eliminate the
flow asymmetry. The flow is still asymmetric but steady.
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Effect of Decreasing the Reynolds Number Keeping
the Axial Distance Fixed (x = 1, a = 20% M_=
= 1.8, Re = 20,000; 15,000; 10,000)

Figure 9 shows the results of a study to investigate
the effect of reducing the Reynolds number on the flow

asymmetry. The full Navier-Stokes equations are used on
a grid of 241 x81. As the Reynolds number is decreased

keeping x = 1, the flow asymmetry decreases but it does

not completely diminish. In this study, the computational

domain is kept fixed in size and the minimum grid spacing
at the solid boundary is kept at 10 -a. It should be stressed

here that with decreasing the Reynolds number to the
values considered, only the full Navier-Stokes solutions

on a relatively fine grid will be valid. Strictly speaking,

the cut-off Reynolds number for flow asymmetry is below
10,000.

Effect of Decreasing the Reynolds Number and
the Axial Distance (x = 0.5, 0.25, 0.1, a = 20*,

M_ = 1.8, R, = 50,000; 25,000; 10,000)

Figure 10 shows the results of a study to investigate

the effect of reducing the axial distance and proportionally
the Reynolds number, the computational domain and the
minimum grid spacing at the solid boundary. In other
words, we are investigating whether the flow is self-

similar or not. The solutions shown in the figure ensure
that the flow is not self similar as the problem is scaled
at each axial station. However, in another numerical

study, we have shown that if the Reynolds number is

increased by the same ratio as that of decreasing the
axial station (e.g. if x = 0.5 then Re = 200,000 such

that xR, = 100,000) and the problem is solved for the
corresponding reduced radius of the cone section and

its reduced computational domain, the asymmetric flow
solution is self similar at any section.

Unsteady Asymmetric Flow (a = 35*,
M_ = 1.8, R. = l0 s

Figure 11 shows snap shots of the unsteady asym-
metric flow of the full Navier-Stokes equations for the

same circular cone as the angle of attack is increased
to 35°. The residual _or curve and the lift coefficient

curve show the same typical re_ as those of Figs. 6
and 7. The period of shedding is smaller and equals to
550x 10-3 = 0.55 and the corresponding shedding fre-
quency is 11.424.

II. Three-Dimensional Flow Appllcatlo_

In Figs. 12-19, we present the results of three-

dimensional asymmetric flow solutions of the thin-layer
equations on a grid of 161 x81 x65 in the circular, normal

and axial directions, respectively. There are several issues

to be answered through the present computational study.
First, for the same circular cone and for the same flow

conditions (angle of attack, Mach number and Reynolds
number), will the three-dimensional flow solution be the

same as that of the locally-conical solution of Fig. 1? If

the answer is negative, the next question to address is: Is
there a length scale which relates the three-dimensional

solution to the locally-conical solution? The second issue
to be addressed is the effect of the Reynolds number, the

angle of attack and the cylindrical-afterbody length on the
three-dimensional flow asymmetry?

To address these issues, a 5*-semiapex angle circu-
lar cone of unit length (cone length is the characteris-

tic length) is considered. The three-dimensional grid of
161x81 x65 is generated by using a modified Joukowski

transformation at axial stations. The grid is clustered in
the normal direction of the body using a geometric series

with the minimum grid spacing of 10_-at the vertex and
10-#at the axial station of unit length. A typical grid is
shown in Fig. 12. With the flow conditions set at a =
20*, Mo¢ = 1.8 and Re = 105, which are the same con-

ditions as those of the locally conical flow of Fig. 1, the
three-dimensional solution produced a symmetric flow,
unlike the local-conical solution which produces asym-
metric steady flow. The reason for the difference is well
understood since the local-conical solution is obtained at

an axial station of x = 1.0. Hence, a length scale is
involved in the Reynolds number, as can be seen from

the analytical conical equation for steady viscous flow,

, Eq. (19). Next, the search is directed at obtaining asym-
metric flow solutions for the three-dimensional co_e flow.
In Fig. 13, we show the solution for the same cone at oc

=40 °, M_ = 1.4 and Re =4x106 . It is seen that the

solution is asymmetric and is nearly self-similar over a
long axial distance of the cone length.

Next, the Reynolds number is increased to 6x 106 and

8x 106 keeping the other flow conditions constant at

= 40* and M_ = 1.4. Figures 14 and 15 show strong
asymmetric-flow solutions with already shed vortices. It
should be noticed that the flow asymmetry changes sides
as we move in the downstream direction. Hence, we have

spatial asymmetric Vortex shedding which is qualitatively
similar to the temporal asymmetric vortex shedding of the
locally-conical flow solutions of Figs. 6, 7 and 11. The

flow instability is of spatial type.

In an attempt to address the issue of the effect of the

cylindrical afterbody on the flow asymmetry, a cylindrical
afterbody of unit length is added to the unit conical
forebody. The flow configuration is solved for the flow

conditions of the isolated cone of Fig. 13. The results
are shown in Fig. 16. Comparing the total-pressure-

loss contours of Figs. 13 and 16, we see that the flow
asymmetry is stronger for the cone.cylinder configuration
in comparison with that of the cone alone. It should be

noted that inside the shock cone surrounding the cone-
cylinder configuration, subsonic flow exists and hence the

downstream boundary has an upsu'eam effect. Figures 17
and 18 show the total-pressure-loss contours and surface-

pressure coefficients in cross-flow planes for the cases of
Figs. 15 and 16.
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Finally, the angle of attack is increased to 50° keep-
ing the Mach number and Reynolds number constants at
1.4 and 8 x 106, respectively. The solution is obtained ac-
curately in time. In Fig. 19, we show two snap shots of
the solution at the time steps of n = 10,116 and 11,818
which correspond to t = 0.10116 and 0.11818, respec-
tively, since &t = 10-5. Comparing the two solutions, one
can see vortex shedding. This case of three-dimensional
unsteady vortex shedding is computationally very expen-
sive since the stable time step is 10-_, and hence it was
not completed.

Concluding Remarks

In the present paper, the unsteady, compressible thin-
layer and full Navier-Stokes equations have been used
to solve for steady and unsteady asymmetric flows and
their passive control around a 5°-semiapex angle cone.
For the steady locally-conical asymmetric solutions, we
have shown that the full Navier-Stokes solutions pro-
duce thicker and shorter free-shear layers than those of
the thin-layer solutions. For the unsteady locally-conical
asymmetric solutions, we have shown that the full Navier-
Stokes solutions on a fine grid produce longer periods of
vortex slytlding and hence smaller shedding frequencies
than those of the thin-layer solutions. Next, we addressed
the effects of reducing the Reynolds number on the flow
asymmetry. First, the Reynolds number is reduced keep-
ing the axial distance constant. We have shown that the
cut-off Reynolds number for the flow asymmetry is less
than 10,0(30. Second, the Reynolds number is reduced
along with the proportional reduction of the axial distance,
the computational domain and the minimum grid spacing.
We have shown that the flow asymmetry disappears be-
low the Reynolds number value of 25,000. Moreover,
we have shown that the flow is not globally conical. Fi-
nally, the three-dimensional flow problem is addressed for
the same cone and a cone-cylinder configuration. Flow

asymmetry has been obtained using short-duration dis-
turbances. The flow asymmetry becomes stronger as the
Reynoldsnumber and theangle ofattackareincreased.

It also becomesstrongdue to the addition of a cylindrical
aftcrbody.Unsteadyflowasymmetryhasalsobeenob-
tained.It has also been noticed that for certain flow condi-

tions, the flow asymmetry shows spatial vortex shedding

which is qualitatively similar to the temporal vortex shed-
drag of the unsteady locally-conical asymmemc flow.
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15. Three-dimenisonal asymmetric flow around a cone of unit length, 5°-semiapex angle, short-

duration disturbanee.
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Osama A. Kandil ° and Tin-Chee Wong t
Old Dominion University, Norfolk, VA 23529
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Abstract

The unsteady, compressible, thin-layer Navier-Stokes
equations are used to obtain three-dimensional, asym-
metric, vortex-flow solutions around cones and cone-

cylinder configurations. The equations are solved us-
ing an implicit, upwind, flux-difference splitting, finite-
volume scheme. The computational applications cover
asymmetric flows around a 5°semi-ape x angle cone of
unit length at various Reynolds number. Next, a cylin-
drical afterbody of various length is added to the conical
forebody to study the effect of the length of cylindrical
afterbody on the flow asymmetry. One of the compu-
tational solutions has been validated by comparing the
computed surface pressure with those of the experimen-
tal data. All the asymmetric flow solutions have been
obtained by using a short-duration side-slip disturbance.

Introduction

In this paper, the problem of asymmetric vortex-flow
around three-dimensional cone and cone-cylinder body is
addressed. This problem has received considerable at-
tention by researchers in the computational fluid dynam-
ics area t7 and by researchers in the experimental fluid
dynamics area 6"13. The problem is of vital importance
to the dynamic stability and controllability of missiles
and fighter aircraft. When flow asymmetry develops, it
produces side forces, asymmetric lifting forces and cor-
responding yawing, rolling and pitching moments that
might be larger than those available by the control sys-
tem of the vehicle. The onset of flow asymmetry oc-
curs when the relative incidence (ratio of angle of attack
to nose semi-apex angle) of pointed forebodies exceeds
certain critical values. At these critical values of rela-

tive incidence, flow asymmetry develops due to natural
and/or forced disturbances. The origin of natural dis-
turbances may be a transient side-slip, an acoustic dis-
turbance, or similar disturbance of short duration. The
origin of forced disturbances is geometric perturbations
due to imperfections in the nosegeometricsymmetryor

similardisturbancesofpermanentnature.Inadditionto
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the relative incidence as one of the influential parameters
for the onset of flow asymmetry, the freestream Mach
number, Reynolds number and shape of the body-cross
sectional area are also important parameters.

In several recent papers by the present authors TM, the
unsteady, thin-layer, compressible Navier-Stokes equa-
tions have been used to simulate steady and unsteady,
asymmetric vortex flows, including their passive control,
around cones with different cross-sectional shapes. The
emphasis of these papers was extensive computational
studies of the parameters which influence the asymmet-
ric flow phenomenon and its passive control. Since the
computational cost associated with the solution of three-
dimensional-flow problems with reasonable flow resolu-
tion is very expensive, all the computational solutions
were obtained using a locally-conical flow assumption.
Such an assumption reduces the problem solution to that
on two conical planes, which are in close proximity of
each other, and hence it reduces the computational cost
by an order of magnitude. Moreover, such solutions still
provide extensive understanding of the flow physics since
one can use very fine grids for reasonable flow resolution.
These studies showed that asymmetric flow solutions
were unique irrespective of the type of flow disturbance;
a random disturbance in the form of a machine round-off
error or a controlled disturbance in the form of a short-

duration side.slip disturbance. Unsteady asymmetric flow
solutions with perfectly periodic vortex shedding were
successfully simulated, and the solutions were unique ir-
respective of the computational scheme used. We also
showed that as the Mach number was increased, the flow

asymmetry was decreased and as the Reynolds number
was increased, the flow asymmetry was increased. The
cross-sectional shape of the cone has been shown to be a
very influential parameter on the flow asymmetry. Circu-
lar sections produced very strong flow asymmetry and di-
amond sections l_oduced relatively-weaker flow asymme-
try. Passive control of the flow asymmetry was demon-
strated by using vertical fins of different heights along
the leeward plane of geometric symmetry and by using
thin and thick side snakes with different orientations. It
was also shown that side-snakes control is more practical
than the vertical-fin control since it was effective over

a wide range of angle of attack and provided additional
lifting force. In a later paper, by the present authorss,
the full Navier-Stokes solutions were compared with the
thin-layer Naris-Stokes solutions. It was shown that the
full Navier-Stokes solutions produced thicker free-shear



layersandmorevortex-coreresolutionascomparedwith
thoseof thethin-layerNavier-Stokesequations.In refer-
ence5,a fewtentativethree-dimensionalflowsolutions
werealsopresented.

In anattemptto simulateasymmetricvortexflow
aroundanogive-cylinderbodyatanangleof attackof
40°, afreestreamMachnumberof 0.2andafreestream
Reynoldsnumberof 200,000;DeganiandSchif-_used
theunsteady,thin-layer,Navier-Stokesequationsalong
withanimplicitschemewhichissecond-orderaccuratein
time.Theschemeusescentral-differencingin thecross-
flowplaneandupwindflux-vectorsplittingin thestream-
wisedirection.Byln-ffoducingaforcedasymmetricdis-
turbancenearthebodynoseintheformofasmallsurface
jet,asymmetricflowsolutionwasobtained.Whenthejet
wasturnedoff, theflowasymmetrydissipatedandthe
flowrecoveredits symmetry.

In a laterpaperbyDegani7,thesamecomputational
schemewasusedtosolvefortheflow around the same

ogive-cylinder body over a wide range of angle of attack;
a = 20° - 80°. His numerical experiments focused on
investigating the origin of vortex asymmetry. Based on
his results, he suggested that the flowfield around slender
bodies could be divided into three main groups depending
on the angle of attack range. This range might change
by +10 °, depending on the flow conditions. In the range
0° < _ < 30% the flow was symmetric and introduction
of small disturbances near the nose had a small effect on

the flow symmetry. In the second range, 30* < o_< 60",
the flow became steady asymmetric upon introduction of
a space-fixed forced disturbance near the nose. The level
of asymmetry was a function of the location and size of
the forced disturbance, and for large size disturbances, the
asymmetry became unsteady with very high frequency.
However, when the disturbance was removed the flow

recovered its symmetric shape. He attributed the origin
of asymmetry to a convective-type-instability mechanism,
In the very high range, 60* < o_< 80", theflow became un-
steady with vortex shedding upon introduction of a small
transient disturbance with short duration, lie attributed

the origin of flow unsteadiness and vortex shedding to
an absolute-type-instability mechanism. In that range of
angle of attack; he also showed that the convective-type-
instability mechanism was possible upon introduction of
a space-fixed disturbance near the nose. Although this
investigation revealed good tentative conclusions, there
are several remaining questions to be addressed, which
are related to the scheme dissipative effects, particularly
in the cross-flow planes, and the grid fineness and its
resolution of the disturbance growth.

In the present paper, we focus on the three-
dimensional asymmetric flow problem. In particular,
we address several important issues concerning the flow
asymmetry around three-dimensional bodies. First, the
three-dimensional asymmetric flow around a 5*semi-apex
angle cone of unit length is considered in respons_ to a
short-duration disturbance in the form of a transient side

slip. With guidance from the locally-conical solutions, the
angle of attack is varied between 30° and 50°, the Mach
number is varied between 1.4 and 1.8 and the Reynolds
number is varied between 105 and 8x l0s searching for
asymmetric flow solutions due to a short-duration distur-
bance. Next, the flow conditions are fixed and a cylindri-
cal afterbody is added to the same cone of unit length to
study the effect of the length of the cylindrical afterbody.
The computational results have also been verified using
comparison of the surface-pressure coefficient with that
of the experimental data of Landrum 8.

Formulation

Thin-Layer Navier-Stokes Equations

The conservative form of the dimensionless, unsteady,
compressible, thin-layer Navier-Stokes equations in terms
of time-independent, body-conformed coordinates _i, _2
and _3 is given by

OQ + o_, o(_,.)_ = o; s = 1 - 3 _)
0t 0_' O_2

where

_= = _=(x_,x2,x3) C2)

Q - i - Lo,pu,, p_, pu_,_]' (3)

I_= -- inviscid flux

J

= _[,oUm, putUm + Cgt_mp, pu_.Um

.i

+Oq2_mp, pu3Um + Oq3_mp, (pe + p)Um]t (4)

(l_,)2_=viscousand heat--conduction fluxin_2
direction

_[0,_,_2_i,0k_2r,2,0_2_,3,

Ad2(u._ - ca)]';k = i - 3,n = I- 3 (5)

U= = _=uk (6)

The firstclementofthethreemomentum elementsofEq.

(5)isgivenby

Mo,/_Re( Out

The second and thirdelements of the momentum elements

are obtained by replacing the subscript 1, everywhere in
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Eq. (7), with 2 and 3, respectively. The last element of
Eq. (5) is given by

where

la

+(7-1)Pr 0(- J p = 1 - 3 (8)

I - *aUk c_
= ", = w = ao,,-uo (9)

In Eqs. (1)-(9), the dimensionless variables are referenced
to thei_ appropriate frees_cam values. The dimensionless
density p, Cartesian velocity components ut, u2 and u3,
total energy per unit mass, e, dynamic viscosity, # and
speed of sound, a, are defined as the ratio of the corre-
sponding physical quantities to those of the flea.stream;
namely, p_c, a,x, p_a_, /Joc and a,x; respectively. The
pressure, p, is non-dimensionalized by poca_:, and is re-
lated to the total energy for a perfect gas by the equation
of state

P=(3'-I)P e-_uiu i ; j=l-3 (I0)

where "r is the ratio of specific heats and its value is 1.4.
The viscosity,/_, is calculated from the Sutherland's law

. = T3/2(1 + c'_
\_---_], c = 0.4317 (II)

where T is the temperature which is non-dimensionalized
by T_. The Prandd number, P¢ is fixed at 0.72. The
Reynolds number is defined as Re = p_U_L/I_ and
the characteristic length, L, is chosen as the length of the
body.

In Eqs. (1)-(10), the indicial notation is used for con-
venience. The subscripts k, n, p and j are summation
indices, the superscript or subscript s is a summation in-
dex and the superscript or subscript m is a free index.
The partial derivative _ff is referred to by _.

Boundary and Initial Conditions

Boundary conditionsare explicitly implemented.
They include the inflow-outflowconditions and the
solid-boundary conditions. At the plane of geomet-
ric symmetry, periodic conditions are used. Since the
frcestream Mach number is supersonic and theinflow-
outflow boundaries are also supersonic, freesu-eam condi-
tions are specified at the inflow boundaries and first-order
extrapolation of the flow variables is used at the outflow
boundaries.The conicalshockenclosingthebodyiscap-

turedaspartofthesolution.On thesolidboundary,the
no-slipand no-penetrationconditionsareenforced;ut=

u2= us= O,and thenormalpressuregradientissetequal

to zero. For the temperature, the adiabatic boundary con-
dition is enforced at the solid boundary.

The initial conditions correspond to the freestream
conditions with ut = u2 = us = 0 on the solid boundary.
The freestre_.conditions are given by

p_:=a_=T_= 1,

UI_c = M_c COS_COS_,

u._ = -M_ sinfl,

us_ = Mo_sin a cos d,

i . rL
Px = 1/7, eoc - + (12)

7(7- 1) 2

where c_ is the angle of attack and/3 the side slip angle.

Computational Scheme

The implicit, upwind, flux-difference splitting finite-
volume scheme is used to solve the unsteady, compress-
ible, thin-layer Navier.Stokes equations. The scheme uses
the flux-difference splitting scheme of Roe which is based
on the solution of the approximate Riemann problem.
In the Roe scheme, the inviscid flux difference at the
interface of computational cells is split into two parts;
left and right flux differences. The splitting is accom-
plished according to the signs of the eigenvalues of the
Roe averaged-Jacobian matrix of the inviscid fluxes at
the cell interface. The min-mod flux limiter is used to

eliminate oscillations in the shock region. The viscous-
and heat-flux terms are linearized and the cross-derivative

terms are eliminated in the implicit operator. The vis-
cous terms are differenced using a second-order accurate
central differencing. The resulting difference equation is
approximately factored and is solved in three sweeps in
the _I, _2 and ,_sdirections. The computational scheme
is coded in the computer program "CFL3D."

Computational Applications and Discussions

In the present computational applications, we consider
the three-dimensional solutions of the unsteady, com-
pressible, thin-layer Navier-Stokes equations for asym-
metric vortex flows around a circular cone and circu-

lar cone-cylinder configurations. There are several is-
suesto be addressed through the present study. First,
for the same circular cone of 5*-semi-apex angle _ and
for the same flow conditions and sourceof disturbance,
willthethree-dimensional flow solution be the same as

that of the locally-conical flow solution? If the answer
is negative, the next question to address is: Is there a
length scale which relates the three-dimensional solution
to the locally-conical solution? The second issue to be
addressed is the effect of Reynolds number on the flow
asymmetry? The third issue to be addressed is the effect
of the cylindrical-afterbody length on the flow asymme-
try. Finally, we address the question of code and grid val-
idation by comparing the results of an asymmetric flow
solution with those of the experimental data s.



Circular Cone

A 5°-semi-apex angle circular cone of unit length
(cone length is the characteristic length) is considered to
address the first two issues mentioned above. This is the
same circular cone which was considered by the authors
in Ref. 1 for the locally-conical flow solutions. A three-
dimensional grid of 161 x81 x65 in the wrap around, nor-
mal and axial directions, respectively, is generated by us-
ing a mod/fied loukowski transformation at axial stations.
The grid is clustered algebraically in the normal direction
of the body using a geometric series with minimum grid
spacing of 10-6 at the cone vertex and 10-5 at the axial

station of unit length. A typical grid is shown in Fig. 1.
The cross-flow grid size of 161x81 is the same grid size
which was used for the locally-conical flow solutions of
Ref. 1.

With the flow conditions set at c_= 20", M_ = 1.8 and
Re = 105, which are the same conditions as those of the

locally-conical flow of Ref. I, the three-dimensional solu'
tion produces a symmetric steady flow, unlike the locally-
conical solution which produces asymmetric steady flow.
The reason for the difference is well understood since

the locally-conical solution is obtained at an axial sta-
tion of x = 1.0. Hence, a length scale is involved in the
Reynolds number, as can be seen from the analytical con-
ical equation for steady viscous flow. Next, the search is
directed at obtaining asymmetric flow solutions for the
three-dimensional cone flow. In Fig. 2, we show the so-
lution in the form of total-pressure loss for the same cone
at a .= 40', M_ = 1.4 and Re = 4 x 106. It is seen that
the solution is asymmetric and is nearly serf-similar over
a long axial distance of the cone length. This solution
is obtained using a short-duration side-slip disturbance.
When the residual error drops four orders of magnitude,
a side-slip disturbance of/3 = 2* is applied for 100 it-
eration steps, then it is removed. Thereafter, the pseudo
time stepping is continued until the residual error drops
again four to five orders of magnitude and a stable asym-
metric solution is obtained. It should be noted that a ma-
chine round-off error type of random disturbance cannot
be used to obtain three-dimensional asymmetric solutions
since the residual e_ never drops to machine zero.

Next, the Reynolds number is increased to 5x 106
and 6x I(Ys keeping the other flow conditions constant
at _ = 40 and M_ 1.4. Figures 3 and 4 show the total-
pressure-loss solutions for these cases. Figure 3 shows
that the asymmetry of the vortical flow gets strong and the
self similarity of the flow asymmetry is substantially lost
However, it is noticed that the flow asymmetry does not
change sides as the solution develops in the downstream
direction. Figure 6, which corresponds to the P_ of
6xl0 6, shows that the flow asymmetry changes slates
as the solution develops in the downstream direction.
Moreover, it is noticed that shed vorti_ e_st in the flow,
A close study of the solutions between the shown fourth
cross-flow plane and seventh cross-flow plane reveals
that the flow asymmetry changes from the right side

(fourth cross-flow plane) to the left side (seventh cross-

flow plane). The solutions on these two planes are nearly
scaled mirror-images of each other. The present spatial
flow asymmetry is qualitatively similar to the temporal
flow asymmetry of the locally-conical flow solution of
Ref. 1 (see Figure 8 of the present paper).

Figures 5 and 6 show front and rear side views of
the limiting streamlines for the cases of Re = 4 x 106 and
Re = 6x 106, respectively. By comparing the streamlines,
lines of separation and attachment of the front and rear
sideviews in each figure, it is noticed that the flow asym-
metry exists on the boundary and becomes stronger as
the Reynolds number increases. As the Reynolds number
increases, the separation and reattachment lines changes
from radial straight lines to highly curved lines.

Figure 7 shows the total-pressure-loss solution for the
same cone for a higher Reynolds number, Re = 8 x 106.
The asymmetry of the vortex flow becomes much stronger
as compared with the previous cases of Figs. 2-4. By
comparing the solution of this case with that of the Re
= 6xl06, it is noticed the flow asymmetry of the case
with high Re changes sides along a shorter axial distance
(third and fifth cross-flow planes) in comparison with that
of the low Re. Moreover, the flow asymmetry of the
case with high Re changes sides one more time (fifth and
ninth cross-flow planes) and thus a complete wave length
of flow asymmetry is formed between the third and ninth
cross-flow planes. Strong spatial shed vortex exists in the
flowfield. This solution is strongly similar to the unsteady
asymmetry local-conical flow solution at different time
steps which is depicted in Fig. 8 on a cylinder with the
axis of the cylinder representing time. The behavior of the
flow asymmetry over one period in Fig. 8 is qualitatively
similar to the behavior of the flow asymmetry over one
wave length in Fig. 7. Figure 9 shows the total-pressure-
loss contours and surface-pressure coefficient at different
axial stations for the case of Fig. 7. The solutions at axial
stations of X/L = 0.2 and 0.9 arc almost the same (the
total pressure losses are drawn to a scale given by the
ratio of the circular diameters at X/L = 1 station and the
local axial station). The flow asymmetry between these
two stations represents a full wave length.

Circular Cone-Cylinder Configurations

To address the issue of the effect of cylindrical af-
terbody length on the flow asymmetry a cylindrical af.
terbody of different lengths is added to the unit-length
conical forebody. The flow around the resulting cone-
cylinder configurations is solved with the flow conditions
of _ ffi40, M_ = 1.4 and Re ffi 4xlO 6, which are the
same flow conditions of the isolated unit-length cone of
Fig. 2. The lengths of the cylindrical aftcrbody are cho-
sen as 1, 1.5 and 2 and the corresponding grid sizes are
taken as 161x81x65,161x81x69 and 161x81x72; re-
spectively. The source of flow disturbance is the same
short duration 2*-side-slip disturbance. The computed
total-pressure loss for these cases are given in Figs. 10,
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11 and 12; respectively. For the cone-cylinder configura-
tion of 1:1 (cone length: cylinder length), Fig. 10 shows
a very strong asymmetric flow on the cone, in compar-
ison with the flow asymmetry of the isolated cone of
Fig. 2, and on the cylindrical afterbody as well. It should
be noted that inside the conical ._sh_k_ surrounding the
cone-cylinder configuration, subsonic flow regions exist
and hence the downstream cylindrical-afterbody bound-
ary has an upstream effect. The cylindrical afterbody has
dual effects which increases the flow asymmetry, the first
is due to the cone-cylinder juncture and the second is due
to the increase of the local angle of attack of the leeward
side of the cylinder. Both of these effects increase the
spatial growth of the flow asymmetry.

For the cone-cylinder configuration of 1:1.5, Fig. 11
shows stronger forebody asymmetry (first five cross-flow
planes) in comparison with that of Fig. 10. On the cylin-
drical afterbody, three cmssdtow planes are only shown
on a portion of its length. It should be noted here that
slight flow unsteadiness has been detected during the
computations. In Fig. 12, two snap shots are shown
for the unsteady asymmetric flow solution of the cone-
cylinder configuration of 1:2. Since the time step for a
stable time-accurate solution of this case does not exceed
10-s, it is computationally prohibitive to fully solve this
case.

Next, we show a comparison of the computed results
with available experimental data. For this purpose, we
consider the cone-cylinder configuration of 0.5:0.5 which
was experimentally tested by Landrum s. The configura-
tion angle of attack is 46.1 °, the Mach number is 1.6
and the Reynolds number based on the total configu-
ration length (cone + cylinder) is 6.6x 106. The cone
semi-apex angle is 9.5 °. The problem is solved using a
grid size of 161x81x65. Figure 13 shows the surface-
pressure coefficient along with the experimental data, the
total-pressure-loss contours and the total Mach-number
contours at the axial stations of 0.075, 0.125, 0.225,
0.475, 0.575 and 0.775. First, the computed and mea-
sured surface-pressure coefficient are in good agreement
on all the axial stations. Second, by studying the total-
pressure-loss contours along with the total Maeh-number
contours, it is seen that flow asymmetry starts slightly at
X/L = 0.0750, and spatially grows in the downstream di-
rection. Moreover, the asymmetry changes sides in the
downstream direction. This comparison conclusively val-
idates our computed results and the grid size.

Concluding Remarks

The unsteady, compressible, thin-layer Navier-Stokes
equations are used to obtain three-dimensional, asymmet-
ric, vortex-flow solutions around cones and cone-cylinder
configurations. Several imlxx'tant issues are addressed
in the present study. By increasing the flow Reynolds
number for flows around a cone, we have shown that

the flow asymmetry becomes strong and changes sides in

the downstream direction. For the high-Reynolds flows,
the spatial asymmetric flow develops in a wavy manner,
which is qualitatively similar to the temporal asymmetric
flow development of the locally-conical solutions, where
the flow asymmetry develops in a periodic manner. By

adding a cyli0_cal afterbody to the conical forebody,
the flow asymmetry becomes stronger in comparison with
that of the isolated cone. As the length of the cylindri-
cal afterbody is increased, the flow asymmetry becomes
stronger and unsteady. All these flow solutions have been
obtained by using a short-duration side-slip disturbance.
Finally, the computed results and grid used are conclu-
sively validated.
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Figure 1. Typical conical grid for a three-dimensional cone, 161 x81 x65.
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Figure 2. Asymmetric flow solution around a cone of uni_ length, short-duration side slip.
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Asymmetric flow solution around a cone of unit length, short-duration side slip.
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Figure 4. .,_,symmetric flov_ solution around a cone of unit length, short-duration side slip.
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Figure 5. Front and rear sideviews of the limiting streamlines.
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Figure 7. Asymmetric flow solution around a cone of unit length, short-duration side slip•
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