46 research outputs found

    Effects of preculturing conditions on lag time and specific growth rate of Enterobacter sakazakii in reconstituted powdered infant formula

    Get PDF
    Enterobacter sakazakii can be present, although in low levels, in dry powdered infant formulae, and it has been linked to cases of meningitis in neonates, especially those born prematurely. In order to prevent illness, product contamination at manufacture and during preparation, as well as growth after reconstitution, must be minimized by appropriate control measures. In this publication, several determinants of the growth of E. sakazakii in reconstituted infant formula are reported. The following key growth parameters were determined: lag time, specific growth rate, and maximum population density. Cells were harvested at different phases of growth and spiked into powdered infant formula. After reconstitution in sterile water, E. sakazakii was able to grow at temperatures between 8 and 47°C. The estimated optimal growth temperature was 39.4°C, whereas the optimal specific growth rate was 2.31 h-1. The effect of temperature on the specific growth rate was described with two secondary growth models. The resulting minimum and maximum temperatures estimated with the secondary Rosso equation were 3.6°C and 47.6°C, respectively. The estimated lag time varied from 83.3 ± 18.7 h at 10°C to 1.73 ± 0.43 h at 37°C and could be described with the hyperbolic model and reciprocal square root relation. Cells harvested at different phases of growth did not exhibit significant differences in either specific growth rate or lag time. Strains did not have different lag times, and lag times were short given that the cells had spent several (3 to 10) days in dry powdered infant formula. The growth rates and lag times at various temperatures obtained in this study may help in calculations of the period for which reconstituted infant formula can be stored at a specific temperature without detrimental impact on healt

    Preferential Paths of Air-water Two-phase Flow in Porous Structures with Special Consideration of Channel Thickness Effects.

    Get PDF
    Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures

    Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media

    Full text link
    Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 Ό\mum. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference techniques. The accuracy of these two methods is discussed and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur

    Effects of preculturing conditions on lag time and specific growth rate of Enterobacter sakazakii in reconstituted powdered infant formula

    No full text
    Enterobacter sakazakii can be present, although in low levels, in dry powdered infant formulae, and it has been linked to cases of meningitis in neonates, especially those born prematurely. In order to prevent illness, product contamination at manufacture and during preparation, as well as growth after reconstitution, must be minimized by appropriate control measures. In this publication, several determinants of the growth of E. sakazakii in reconstituted infant formula are reported. The following key growth parameters were determined: lag time, specific growth rate, and maximum population density. Cells were harvested at different phases of growth and spiked into powdered infant formula. After reconstitution in sterile water, E. sakazakii was able to grow at temperatures between 8 and 47°C. The estimated optimal growth temperature was 39.4°C, whereas the optimal specific growth rate was 2.31 h-1. The effect of temperature on the specific growth rate was described with two secondary growth models. The resulting minimum and maximum temperatures estimated with the secondary Rosso equation were 3.6°C and 47.6°C, respectively. The estimated lag time varied from 83.3 ± 18.7 h at 10°C to 1.73 ± 0.43 h at 37°C and could be described with the hyperbolic model and reciprocal square root relation. Cells harvested at different phases of growth did not exhibit significant differences in either specific growth rate or lag time. Strains did not have different lag times, and lag times were short given that the cells had spent several (3 to 10) days in dry powdered infant formula. The growth rates and lag times at various temperatures obtained in this study may help in calculations of the period for which reconstituted infant formula can be stored at a specific temperature without detrimental impact on healt

    Smile and default: the role of stochastic volatility and interest rates in counterparty credit risk

    No full text
    In this research, we investigate the impact of stochastic volatility and interest rates on counterparty credit risk (CCR) for FX derivatives. To achieve this we analyse two real-life cases in which the market conditions are different, namely during the 2008 credit crisis where risks are high and a period after the crisis in 2014, where volatility levels are low. The Heston model is extended by adding two Hull–White components which are calibrated to fit the EURUSD volatility surfaces. We then present future exposure profiles and credit value adjustments (CVAs) for plain vanilla cross-currency swaps (CCYS), barrier and American options and compare the different results when Heston-Hull–White-Hull–White or Black–Scholes dynamics are assumed. It is observed that the stochastic volatility has a significant impact on all the derivatives. For CCYS, some of the impact can be reduced by allowing for time-dependent variance. We further confirmed that Barrier options exposure and CVA is highly sensitive to volatility dynamics and that American options’ risk dynamics are significantly affected by the uncertainty in the interest rates
    corecore