203 research outputs found

    Oligopeptide Transporter-1 is Associated with Fluorescence Intensity of 5-Aminolevulinic Acid-Based Photodynamic Diagnosis in Pancreatic Cancer Cells

    Get PDF
    [Background] The 5-aminolevulinic acid (ALA)-based photodynamic diagnosis is based on the accumulation of photosensitizing protoporphyrin IX in the tumor after ALA administration. However, the mechanisms connecting exogenous ALA and tumor fluorescence in pancreatic cancer remain unclear. We aimed to elucidate the mechanism underlying the ALA-induced fluorescent. [Methods] Human pancreatic duct epithelial cells (hPDECs) and pancreatic cancer cell lines were used. The expressions of ALA-associated enzymes and membrane transporters in these cell lines were investigated. ALA-induced fluorescence was also investigated. [Results] The expression of oligopeptide transporter-1 (PEPT-1), through which ALA is absorbed, was significantly higher in AsPC-1 cells and lower in MIA PaCa-2 cells than in hPDECs. AsPC-1 cells showed rapid and intense fluorescence after ALA administration, and that was attenuated by PEPT-1 inhibition. ALA-induced fluorescence was not sufficiently strong in MIA PaCa-2 cells to distinguish the cells from hPDECs. [Conclusion] We revealed the association of PEPT-1 with ALA-induced fluorescence. Cancers expressing PEPT-1 could be easily distinguished by this technique from normal cells. These findings help develop novel diagnostic modalities for pancreatic cancer

    Tissue factor expression in human pterygium

    Get PDF
    Purpose: A pterygium shows tumor-like characteristics, such as proliferation, invasion, and epithelial–mesenchymal transition (EMT). Previous reports suggest that tissue factor (TF) expression is closely related to the EMT of tumor cells, and subsequent tumor development. In this study, we analyzed the expression and immunolocalization of TF in pterygial and normal conjunctival tissues of humans. Methods: Eight pterygia and three normal bulbar conjunctivas, surgically removed, were used in this study. Formalinfixed, paraffin-embedded tissues were submitted for immunohistochemical analysis with anti-TF antibody. Double staining immunohistochemistry was performed to assess TF and alpha-smooth muscle actin (α-SMA) or epidermal growth factor receptor (EGFR) expression in the pterygia. Results: Immunoreactivity for TF was detected in all pterygial tissues examined. TF immunoreactivity was localized in the cytoplasm of basal, suprabasal, and superficial epithelial cells. The number of TF-immunopositive cells in pterygial epithelial cells was significantly higher than in normal conjunctival epithelial cells (p<0.001). TF immunoreactivity was detected in α-SMA-positive or -negative pterygial epithelial cells. EGFR immunoreactivity was detected in pterygial epithelium, which was colocalized with TF. Conclusions: These results suggest that TF plays a potential role in the pathogenesis and development of a pterygium, and that TF expression might be involved through EMT-dependent and -independent pathways

    Wavelet analysis of transonic buffet on a two-dimensional airfoil with vortex generators

    Get PDF
    We visualized the shock buffets on a two-dimensional transonic airfoil with and without vortex generators (VGs) by using a fast-framing focusing schlieren imaging. The focusing schlieren visualization showed that the flow three-dimensionality around the airfoil became remarkable with installing the VGs. This implies that narrow depth of focus of imaging systems was a key to accurately capture the characteristics of the shock oscillation due to the buffet for the cases with VGs. The time-resolved imaging also revealed that non-periodic components were included in the shock oscillation due to the buffet for the cases with VGs. This prevented Fourier analysis from being applied. We used wavelet analysis to extract the characteristic of the shock oscillation for the cases with VGs. The wavelet spectrograms revealed that the low-frequency oscillation having the buffet frequency was still included intermittently in the shock oscillation even when VG controlled the buffet. The rate of appearing the low-frequency oscillation increased with increasing both the interval between VGs and the angle of attack

    Ipragliflozin Ameliorates Endoplasmic Reticulum Stress and Apoptosis through Preventing Ectopic Lipid Deposition in Renal Tubules

    Get PDF
    Background: Chronic kidney disease (CKD) and non-alcoholic steatohepatitis (NASH) are major health burdens closely related to metabolic syndrome. A link between CKD and NASH has been assumed; however, the underlying mechanism is still unknown. Ectopic lipid deposition (ELD) in the hepatocyte results in endoplasmic reticulum (ER) stress, which plays an important role in the development of steatohepatitis. ELD is also assumed to play a role in the development of kidney injury. We aimed to investigate the role of ELD and ER stress in the development of CKD, and evaluate the efficacy of a sodium glucose cotransporter-2 inhibitor, ipragliflozin. Methods: Male FLS-ob/ob mice that closely imitate the pathophysiology of NASH were treated with vehicle or ipragliflozin. Metabolic characteristics, histology of the kidney, ER stress, and apoptotic signals were evaluated. Results: The serum triglyceride was significantly lower in mice treated with ipragliflozin. Ipragliflozin reduced ELD in renal tubules. Ipragliflozin also reduced the expression levels of GRP78 and CHOP, apoptotic cells, and interstitial fibrosis. Conclusions: ELD induced kidney injury through ER stress. Ipragliflozin improved the pathogenesis of CKD by reducing ELD and ER stress in NASH-model mice. Our results suggest ipragliflozin has therapeutic effect on CKD in NASH

    A novel method for assessing the renal biopsy specimens using an activatable fluorescent probe

    Get PDF
    Gamma-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) is an activatable fluorescent probe that can be activated by γ-glutamyltranspeptidase (GGT). The expression of GGT in the kidney, which is one of the major organs exhibiting enhanced GGT expression, is exclusively localised to the cortex. Here, we aimed to investigate the feasibility of gGlu-HMRG as a probe for the on-site assessment of renal biopsy specimens. gGlu-HMRG fluorescent probe was applied to the renal proximal tubular epithelial cells and cortical collecting duct cells in vitro, mouse kidneys ex vivo, and human biopsy specimens. In addition, the fluorescence intensities in the cortex and the medulla were comparatively evaluated in the biopsy specimens. The fluorescence signal was rapidly detected in the renal proximal tubular epithelial cells, whereas that in the cortical collecting duct cells was not detected. The fluorescence signal was detected in the mouse kidneys ex vivo without markedly affecting the tissue morphology. In the human biopsy specimens, the fluorescence signal in the cortex was significantly distinct from that in the medulla (p?<?0.05). Thus, this fluorescent probe can be used to distinctly identify the renal cortex in the biopsy specimens
    corecore