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Abstract We visualized the shock-buffets on a two-dimensional transonic airfoil with and 

without vortex generators (VGs) by using a fast-framing focusing schlieren imaging. The focus-

ing-schlieren visualization showed that the flow three-dimensionality around the airfoil became 

remarkable with installing the VGs. This implies that narrow depth of focus of imaging systems 

was key to accurately capture the characteristics of the shock oscillation due to the buffet for the 

cases with VGs. The time-resolved imaging also revealed that non-periodic components were 

included in the shock-oscillation due to the buffet for the cases with VGs. This prevented Fourier 

analysis from being applied. We used wavelet analysis to extract the characteristic of the shock 

oscillation for the cases with VGs. The wavelet spectrograms revealed that the low frequency 

oscillation having the buffet frequency was still included intermittently in the shock oscillation 

even when VG controlled the buffet. The rate of appearing the low frequency oscillation increased 

with increasing both the interval between VGs and the angle of attack. 

 

 

List of Symbols 

AoA = angle of attack, ° 

c = chord, mm 

DOF = depth of focus, mm 

DVG = interval between vortex generators, mm 

f = frequency in a Fourier domain, Hz 

f’ = frequency in a wavelet domain, Hz 

fB = dominated frequency of shock-buffet (buffet frequency), Hz 

HVG = height of a vortex generator, mm  

M = Mach number  

PSD = power spectrum density function of shock oscillation, mm2/Hz 

P0 = stagnation pressure of freestream, Pa 

Re = Reynolds number 

t = time, s 

T0 = stagnation temperature of freestream, K 

VGs = vortex generators 

x,y,z = chordwise-, heightwise-, and spanwise-directions, mm 
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1 Introduction 

Shock-wave boundary-layer interaction (SWBLI) on an airfoil induces a massive flow separa-

tion and leads to large-scale self-induced shock oscillation in a transonic flow, when flight Mach 

number of the aircraft and/or its angle of attack (AoA) increase. This instability is known as buffet 

and can lead to structural vibrations (buffeting). The buffeting greatly affects the aerodynamic 

behavior of the aircrafts and limits their flight envelope. Therefore, the research community has 

been conducting the experiments and simulations on the buffet, to understand the physics of the 

buffet, to predict the onset of the buffet and to explore the buffet control techniques. 

Lee (2001) performed one of the very detail investigations of two-dimensional transonic buffet. 

He proposed the self-sustained mechanism of the shock oscillation due to the buffet. In his model, 

the pressure disturbance is generated at the shock foot on the airfoil and propagated downstream 

within the boundary layer. This pressure disturbance directly feeds back as upstream traveling 

pressure waves (sometimes called as Kutta waves) generated at the trailing edge of the airfoil. The 

round trip time of the pressure waves determines frequency of shock oscillation due to the buffet 

(buffet frequency). This model fairly reproduced the experimental data (Lee 2001, Jacquin et al. 

2009, and Zhao et al. 2013).  

Other different paths for the pressure waves were also proposed to sustain the shock oscillation 

(Stanewsky & Baster 1990, Crouch et al. 2007). Stanewsky and Basler (1990) mentioned that the 

upstream propagating Kutta waves on the lower surface of the airfoils play an important role to 

sustain the shock oscillation. Jacquin et al. (2009) measured the fluctuating pressure on OAT15A 

airfoil and experimentally confirmed the existence of the Kutta waves traveling on the lower sur-

face of the airfoil. They also showed that the estimated buffet frequency using the time scale of the 

lower surface Kutta waves better agreed with the experimental data, compared with those using the 

upper one. In addition, Crouch et al. (2009) observed another path of the pressure disturbance in 

their simulation. The pressure disturbance propagated along the shock wave in the height-wise 

direction and tuned to the leading edge of the airfoil through the outside the supersonic region. His 

observation was qualitatively different from the model proposed by Lee (2001). Thus, the buffet 

mechanism has not been fully understood yet. 

Many research groups have been developing the devices to control the buffet and investigating 

the flow physics related to them. The buffet control devices are mainly categorized into two types: 
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active and passive devices. Boundary layer bleeding and injection of different gas are traditional 

methods to control the boundary layer separation (Schlichting 1979). Molton et al. (2013) tested 

supersonic air injections on the swept wing model as the active buffet control device and compared 

them with mechanical vortex generators (VGs). Vortex generator is one of the most popular and 

traditional passive devices to control the buffet. Titchener and Babinsky (2015) reviewed the re-

searches on the vortex generators. The installation of VGs induces streamwise vortices and in-

creases momentum transfer into boundary layer. In addition, the installation of VGs partitions the 

separation region into number of the cells. These mitigate shock-induced separation and delay the 

buffet. However, the installation of VGs drawbacks to increase the drag in a nominal cruise condi-

tion (Kusunose & Yu 2003). Therefore, we have to optimize the configurations of the VGs, for 

example, number and height of the VG, interval between the VGs and etc.  

The optimal values for the configurations on the airfoil are usually found and confirmed by the 

parametric experiments (Koike et al. 2013 & 2015), simulations (Ito et al. 2016) and multi-

objective optimizations using CFD (Kozakai et al. 2015, Namura et al. 2016). These values are 

still difficult to predict empirically by using a conceptual model of the VG. We believe that both 

understanding of the physics on the buffet and development of the conceptual model of VG on the 

airfoil requires the detail time-resolved spatial information on the buffet for the cases with and 

without VGs, such as shock motion and pressure waves propagation which play an important role 

to sustain the shock oscillation (Lee 1990). To obtain this information, we developed a fast-

framing focusing schlieren imaging system to capture the shock oscillation and the pressure wave 

propagation in the flowfield around the airfoil and capture the buffet for the cases without VGs 

(Yamaguchi et al. 2015). In this study, we applied this imaging system to the experiments of two-

dimensional transonic buffet with VGs and investigated the characteristics of the shock motion.  

In the cases without VGs, the previous works reported that the shock-buffet was quit periodic. 

Therefore, Fourier analysis could easily extract the characteristics of the shock motion. However, 

we found that the shock wave oscillation were not periodic with installing VGs. Therefore, we 

applied the wavelet analysis, instead of the Fourier analysis, to extract the characteristics of the 

shock motion and report them in this work. 
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2 Wind Tunnel Experiments 

2.1 Two-dimensional Airfoil 

The experiments were conducted in a two-dimensional transonic wind tunnel facility of JAXA 

(NAL Second Aerodynamics Division 1982; NAL Two-dimensional Transonic Wind Tunnel 

Laboratory 1999). The wind tunnel was a blow-down type facility and supplied a high-pressure 

compressed air to achieve high Reynolds number (Re) conditions. The test section had a 0.8 m x 

0.45 m cross-section and sited in a plenum chamber. The top and bottom walls of the test section 

had slots to realized transonic flow conditions for a relatively large wing model. Stagnation pres-

sure (P0) and temperature (T0) were 200 kPa and 300 K, respectively. The nominal freestream 

Mach before the wall interference correction (Sawada 1978) was 0.7. These conditions realized the 

nominal Re based on the chord length (c) of 5 millions. 

Figure 1 shows a two-dimensional supercritical airfoil of NASA SC(2)-0518 (Harris 1990) 

used in this study. Cartesian coordinate system was used to represent the experimental results, 

with the origin at the center of the leading edge of the airfoil, the chord direction on the x-axis, 

height from the chord on the y-axis and the spanwise direction of the airfoil on the z-axis. The 

airfoil was supported between two sidewall windows of the test section. To reduce the influence of 

the sidewalls, the boundary layers were bled from the upstream of the window glasses. Oil-flow 

and steady pressure measurements revealed that no effects of corner separation was ± 150 mm 

from the center plane of the airfoil at low AoA conditions for our wind tunnel facility with the 

boundary-layer bleeding (Sato et al. 2010 and Koike et al. 2013). The sweptback angle of the 

model was zero. The chord and span lengths of the airfoil were 200 mm and 450 mm, respectively. 

The model AoA was set from 4° to 7° for each test run. These set AoA are higher by about 1° than 

the effective AoA obtained by the wall interference correction (Koike et al. 2015). Disk roughness 

were aligned normal to the freestream with an interval of 0.1 inch both on the upper and lower 

surfaces of the model at x/c = 0.1. Its diameter and height were 0.05 inch and 0.0031 inch, respec-

tively. Attachment of the disk roughness prompted the boundary layer transition (Braslow 1958).  

Co-rotating rectangular vane-type VGs were installed at x/c = 0.2 on the upper surface of the 

model. The VGs were aligned with an angle of 20° to the freestream. The length of VGs was 4.8 

mm. The height of VGs (HVG) was 1.2 mm. This corresponded to 1.5-times higher than the bound-

ary layer thickness at x/c = 0.2. The interval between VGs (DVG) was varied from 12 mm to 96 
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mm for each test run. Five different DVG conditions including without VGs (DVG = ∞) were tested. 

Note that the VGs were not installed near the sidewalls (|z/c| > 0.75) as shown in Fig. 1. 

2.2 Focusing-schlieren Visualization 

Schlieren imaging is one of the most popular and relatively straightforward flow visualization 

techniques for compressible flows. Setup of schlieren is easier than that of other optical measure-

ments, for example PIV and PLIF etc, because there are no complications due to leaser sheet optics 

and tracer seeding equipment. The schlieren imaging, however, has a high sensitivity for capturing 

not only shock waves but also pressure waves which play an important role to sustain the shock 

oscillation. In addition, the schlieren imaging is applicable for fast-framing visualization because 

the technique directly focuses light from the source on an imaging sensor, while many other tech-

niques have to collect weak illumination from particles or molecules. Therefore, the technique is 

suitable for the studies on unsteady buffet characteristics.  

One of the big issues for the schlieren imaging to apply buffet experiments is flow three-

dimensionality including the corner separation. Flow three-dimensionality blur the motion of 

shock and pressure waves. This prevents conventional schlieren from being applied to detail analy-

 

Fig. 1  Two-dimensional supercritical airfoil (NASA SC(2)-0518) and the installation 

of vortex generators. 
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sis of unsteady buffet characteristics, because conventional schlieren technique is essentially sensi-

tive to the entire length of the light path. Therefore, we applied focusing-schlieren visualization for 

this study. The focusing-schlieren has ability to achieve a narrow depth of focus (DOF) compared 

to the conventional schlieren imaging. Therefore, the technique could reduce capturing unwanted 

three-dimensional flow structures including the corner separation.  

Weinstein’s modern focusing-schlieren system (Settles 2006; Weinstein 2010; Kouchi et al. 

2015) was used in this study. Figure 2 shows the schematic layout of the focusing schlieren system 

for this experiment (Yamaguchi et al. 2015). The system consisted of illuminator and analyzer 

assemblies. The illuminator consisted of a lamp, light diffuser, Fresnel lens and source grid. This 

assembly was sited in the plenum chamber. A metal-halide lamp was used as a light source. The 

continuous light from the metal-halide lamp was diffused by back-projection film and illuminated 

a source grid that consisted of multiple alternating dark bands and clear apertures to make a two-

dimensional light source array. The dark bands were spaced at the same distance as the clear aper-

tures of 2 mm. The source grid was photographically made and was placed to emphasize density 

gradients in the chord direction. The Fresnel lens in front of the source grid condensed the extend-

ed light source to increase the light-collection efficiency.  

The analyzer consisted of a commercial 35-mm camera lens (schlieren lens), cutoff grid, 

Fresnel screen and CMOS camera with an imaging lens. The DOF is proportional to distance from 

the schlieren lens to object (l). The small DOF requires short l. Therefore, the analyzer assembly 

except for the CMOS camera was also sited on the plenum chamber to minimize DOF. The 

schlieren lens (300-mm focal length and 2.8 f-number) was placed at 600 mm from the center 

 

Fig. 2  Schematic layout of focusing schlieren system. 
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plane of the airfoil (z = 0). This setup made the Weinstein’s unsharp DOF ±11.2 mm. This was 

experimentally confirmed using a 1-mm-diameter, under-expanded supersonic air jet (Yamaguchi 

et al. 2015).  

Flow over an aerofoil after establishing the buffet is three dimensional even for the two-

dimensional wing experiments. This is due to the nature of the flow, not just the corner effect in 

the wind tunnel. Sugioka et al. (2016) measured the unsteady surface pressure on a two-

dimensional airfoil of NASA CRM by using Pressure Sensitive Paint (PSP) for similar experimen-

tal configuration to our experiments. Their measurements revealed that the averaged and rms pres-

sure distributions before and after establishing the buffet were quasi two-dimensional at |z| < 50 

mm. The present DOF was smaller than this value. Therefore, we conclude that the present system 

had enough narrow DOF to reduce capturing the unwanted three-dimensional flow structures in-

cluding the corner separation. Details on the effects of DOF are discussed in Sect. 4.1. 

The short l of 600 mm achieved the narrow DOF, but magnified the image size on the imaging 

plane. For the present layout, the image magnification was unity. The image sensor was too small 

to capture the entire flow field over the airfoil having c = 200 mm. Therefore, the image was pro-

jected onto a Fresnel screen and relayed to the CMOS camera. The CMOS camera (Phantom 

v710) with a large-aperture imaging lens (80-mm focal length and 1.4 f-number) captured the 

unsteady shock-oscillation with 7,000 frames per second. The camera recorded 8,345 images in a 

single experiment with its exposure time of 20 µs, which corresponded to the data acquisition time 

of 1.2 second. The schlieren lens formed not only the image of the object plane but also that of the 

source grid. The cutoff grid was placed on the plane where the source grid image was focused. The 

cutoff grid was adjusted to obstruct a fraction of the light from the source grid.  

3 Data Reduction 

The acquired images were post-processed to analyze the shock oscillation. Figure 3 shows the 

flowchart of the image processing. This processing mainly consists of three parts: shock enhance-

ment, conversion of a time-series image into a time-space map, and Fourier and wavelet analyses 

of a shock trajectory. Details on each process are discussed in the following sections. 
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3.1 Shock-wave Enhancement 

The upper right side figure in Fig. 3 shows typical unprocessed flow images. The center por-

tion of the image captures the shock waves established on the upper side of the airfoil. The flow 

images were subtracted by a blank (background) image taken for wind off pixel by pixel. The 

background-subtracted images were rotated, as the AoA became zero. Each rotated image was 

normalized as the spatial-averaged intensity became zero and the spatial-standard deviation of the 

intensities became unity. After these processing, the shock wave was enhanced by multiplying the 

processed image by its gradient in chordwise-direction pixel by pixel. The image intensities on the 

shock region were much higher than those on the other regions. The image gradients on the shock 

region were also high compared to the other regions, because the shock region was thin. Therefore, 

the product of the image intensity and its gradient enhanced the shock wave region as shown in the 

middle right side figure in Fig. 3. As a result, the shock region is indicated by the brightest line in 

this figure. Note that the model position was superimposed to the processed image by the white 

line in this figure. 

3.2 Shock-trajectory Extraction 

The image intensities were extracted along x/c at a certain y/c from a time-series image and 

were remapped into x-t diagram. A typical x-t diagram is shown in the lower right side figure in 

 
Fig. 3  Flowchart of buffet analysis. 
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Fig. 3. The shock trajectory was traced by maximum signal point in each time, as shown by the red 

line in this figure. These processes accurately extracted the shock motion. 

3.3 Fourier and Wavelet Analyses 

The shock trajectory extracted from a time-series image was analyzed by Fourier and wavelet 

analyses. Fourier analysis extracted dominant frequency of the shock oscillation and its amplitude. 

The Fourier coefficients were calculated by FFT algorithm in Matlab software. Spectral averaging 

reduced the random noise in the frequency domain. This was done by breaking the input data into 

many segments. In this study, we acquired the images during 1.2 s in a single experiment. These 

data were divided into eleven segments of 0.2 s with 50% segmentation overlap. From each seg-

ment, Fourier spectra were calculated and were averaged to reduce the spectral noise. Because the 

data length for Fourier analysis was 0.2 s, frequency resolution was 5 Hz. 

Fourier analysis decomposes time-series data into periodic functions having various cycles. 

This analysis well extracts dominate cycle speed, strength and phase in the frequency space. This 

analysis, however, loses time information. Fourier analysis is difficult to extract how dominant 

cycles vary in time for non-periodic signals. On the other hand, wavelet analysis decomposes time-

series data into frequency-time space and is able to determine both dominant cycles of the data and 

how those dominant signals vary in time. Therefore, we applied wavelet analysis to the non-

periodic shock motion which mainly appeared for the cases with VGs. Torrence and Compo 

(1998) provide a very useful practical guide to wavelet analysis including statistical significance 

testing. We followed their guidance to evaluate wavelet power spectrum. 

In continuous wavelet transforms (CWT), the wavelet coefficients T(a,b) are evaluated by the 

convolution of a signal S(t) and a wavelet function ψ(t). 

                            

! 

T a,b( ) = S t( ) 1
a
" 

t # b
a

$ 

% 
& 

' 

( 
) dt*                      (1) 

where ‾  indicates the complex conjugate. The parameter a controls the scale of the wavelet 

function and the parameter b controls the position (time shift) of the wavelet function. A Morlet 

wavelet function was used to estimate wavelet power spectrograms in this study. The Morlet 

wavelet function is one of the popular wavelet functions used in practice.  

                                

! 

" t( ) = # $1 4ei% 0te$ t
2 2                         (2) 
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where ω0 is the central frequency of the Morlet wavelet function. This parameter determines the 

maximum scale of the analyzing wavelet. The ω0 was set to be 12. For this value, wavelet frequen-

cy f’ (=1/a) corresponds to Fourier frequency f as following the equation: 

                            

! 

f =
" 0 + 2 +" 0

2

4# $ f = 1.92 $ f                     (3) 

In addition to evaluate the wavelet coefficient, background spectral noise was estimated and 

used for statistical significance testing. To determine significance levels, a background spectrum 

should be chosen appropriately. For the present case, an appropriate background spectrum could 

be modeled by red noise (increasing power with decreasing frequency). The lag-1 autoregressive 

process with Gaussian noise yielded the background spectrum PBG as follow: 

                            

! 

PBG f( ) =
1"# 2

1+# 2 " 2# cos 2$f( )
                       (4) 

where α is the lag-1 autocorrelation of S(t). This model well reproduced with the experimental 

results, as will be mentioned in Scet. 4.3. When a spectral peak of the measured data is 3-times 

higher than the background spectrum, the peak is assumed to be true feature in the spectrum at 

95% confidence level. Details in the significant test for wavelet spectrum are in Torrence and 

Compo (1998). 

4 Results and Discussions 

4.1 Typical Schlieren Images and Flow Three Dimensionality  

Figure 4 shows typical focusing-schlieren images with and without VGs at AoA = 6°. Figure 

4a is the image without VGs when the shock wave traveled upstream. Figure 4b is the image with 

VGs. The interval between adjacent VGs was 12 mm (DVG/HVG = 10). For both cases, only back-

ground subtraction and image rotation were applied. The model surfaces were superimposed on the 

processed images by the white lines. As will be mentioned in Sect. 4.2, the shock-buffet occurred 

at this AoA = 6° when the VGs were not installed. The installation of the VGs prevented from the 

buffet at this AoA. 

For the case without VGs, the shock wave strongly interacted with the turbulent boundary 

layer on the upper surface. The positive pressure gradient due to the shock wave induced the 

boundary layer separation. The very large λ-type shock wave was generated by the SWBLI as 
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shown in Fig. 4a. The triple point of the λ-type shock reached at y/c ~ 0.3. The foot of λ-shock 

went upstream of x/c ~ 0.2. The strong SWBLI resulted in the shock-oscillation.  

When the shock wave traveled upstream, very large λ-shock and boundary-layer separation 

appeared as shown in Fig. 4a. On the other hand, when the shock wave traveled downstream, the 

shape of the shock wave changed form λ-type to normal shock and the flow separation disappeared. 

For both shock-traveling cases, many pressure waves propagated from the downstream of the 

shock wave to the upstream. These waves merged with the shock wave and seem to drive the 

shock-oscillation (Yamaguchi et al. 2015).  

Installation of VGs reduced SWBLI and made the separation smaller as shown in Fig. 4b. 

The small λ-shock appeared at x/c ~ 0.4. The amplitude of the shock-oscillation was quite smaller 

than that without VGs. Two left running shock waves also appear from the upper surface at x/c ~ 

0.2 due to the installation of the VGs. These waves impinges into the λ-shock at y/c = 0.25 and 

0.35.  

Figure 4b shows not only the flow structures but also the importance of the narrow DOF to 

reduce capturing the unwanted structure. Figure 4b shows very blurred wave at x/c ~ 0.32 in addi-

        

        

 

Fig. 4  Typical focusing schlieren images of the flow on the upper side of 

a supercritical airfoil at AoA = 6°: a) without VGs and b) with VGs. Open 

circulars on the surface of the airfoil indicate x/c = 0.2 and 0.5.  
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tion to the clear ones at x/c ~ 0.4. This blur wave overlapped on the clear left running waves from 

the VGs. This blurred region was caused by the shock wave sited on the region out of focus. The 

VGs were not installed near the both sidewalls (see Fig. 1). The shock wave near the sidewall 

might propagate upstream compared with that in the center part of the airfoil. In addition, flow 

three-dimensionality became remarkable when the interval between the VGs increased. The flow 

structures just behind VGs could be different from those at the middle points between VGs. Thus, 

the narrow DOF is necessary to investigate the flow structures in detail for the cases with VGs. 

The focusing schlieren imaging is better suited for the buffet researches with VGs, compared with 

the conventional schlieren. 

4.2 Unsteady Shock Wave Motions 

Figures 5 and 6 show the time-space shock trajectories extracted at y/c = 0.3. We chose this 

height of y/c = 0.3, because the maximum height of the triple point of the λ-shock was below this 

position. The horizontal axis is x/c and the vertical axis is the time from start of the data acquisi-

tion. These time-space maps were reconstructed from the time-series images processed only by 

background subtraction and image rotation. The bright line, or sometimes broad band, indicate the 

shock trajectory in these figures. These time-space maps show not only the shock wave motion but 

also the upstream propagating pressure waves. The time-space maps clearly show the left-running 

stripe patterns downstream of the shock trajectories shown by the bright lines in Figs. 5 and 6. The 

presence of the stripe patterns indicates the pressure waves were periodically generated and trav-

eled upstream. Please refer to Kouchi (2017) for the details on the analysis of the upstream propa-

gating pressure waves. 

Figure 5 shows the shock motions for various AoA conditions and the effects of the installa-

tion of VGs on them. The left figures are the trajectories without VGs and the right ones are those 

with VGs, respectively. The interval DVG/HVG was 10. The shock oscillations without VGs were 

quite periodic for all AoA conditions. Especially for high AoA ≥ 5°, the amplitude of the oscilla-

tion was much larger than that at AoA = 4°. Such the type of the shock-oscillation is usually 

referred as “shock-buffet”. In the buffet, both the cycle speed and amplitude of the oscillation 

increased with increasing AoA. Even without the buffet, the shock wave slightly oscillated. Its 

cycle speed was remarkably higher than those for the buffet cases. 
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Fig. 5  Typical shock motions at various AoA and the effects of the installation of VGs on it. The inter-

val between the VGs is DVG/HVG = 10.  
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Fig. 6  Effects of the interval between the VGs on the shock oscillations. 
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Installation of VGs seems not to affect the shock oscillation at AoA = 4°. This was drastically 

changed for high AoA ≥ 5°. At AoA = 5°, the installation of VGs greatly reduced the amplitude of 

the shock oscillation. The high frequency component observed at AoA = 4° became remarkable 

with installing the VGs at this AoA. Thus, the installation of VGs controlled the buffet. However, 

the low frequency component of the shock oscillation was still included in Figs. 5e-5g, for exam-

ple t = 0.15-0.18 s in Fig. 5e, though its amplitude was quite small compared with those without 

VGs. With increasing AoA, the amplitude of the low frequency oscillation increased. The cycle 

and amplitude of the shock oscillation became irregular. 

Figure 6 shows the effects of DVG on the shock motions. The angle of attack was fixed to be 

5° where the shock-buffet occurred in the case without VGs. With decreasing DVG, the amplitude 

of the low frequency component due to the shock-buffet decreased and its cycle became irregular. 

Comparison of Figs 6a with 6b indicates that the shock oscillation was less affected by installing 

the VGs with their interval of DVG/HVG = 80. On the other hand, Figure 6c shows that the shock 

motion was quite non-periodic at DVG/HVG = 40. The oscillation having the similar frequency and 

amplitude to the shock-buffet intermittently appeared at DVG/HVG = 40. Figure 6d shows that the 

amplitude of the shock oscillation at DVG/HVG = 20 was greatly reduced by installing the VGs. 

From these two figures, the buffet onset should be between DVG/HVG of 20 and 40 at this AoA = 5°. 

At much shorter interval of DVG/HVG = 10, the high frequency component which was observed in 

the case without the buffet became remarkable. The low frequency component having the similar 

frequency to the buffet oscillation, however, was still included though its amplitude was small in 

this case. 

4.3 Fourier Spectrum and Its Limitation 

Fourier analysis extracted the dominant frequency and its amplitude extracted from each 

shock trajectory. Figures 7 and 8 show the power spectrum density (PSD) functions of the shock 

oscillations and the effects of the installation of the VGs on them. The background spectra esti-

mated by Eq. 4 are also shown by the dashed lines in these figures. Before establishing the buffet, 

the estimated background spectra (Figs 7a and 7d) well agreed with the measured PSD functions in 

all frequency regions. On the other hand, after establishing the buffet, some discrepancy appeared 

between the estimated and measured data at very low frequency, for example f < 30 Hz in Fig. 7c. 

This discrepancy was caused by the frequency component of the buffet oscillation. The overesti-
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mation of the background spectra in very low frequency region, however, has little noticeable 

effect on the significance region of the wavelet spectrograms (see Appendix). 

Figure 7 shows the PSD functions with and without VGs for various AoA. For the case with 

VGs, the interval DVG/HVG was 10. Referring first to the cases without VGs, the energy containing 

the shock oscillation at AoA = 4° was globally lower than those at AoA ≥ 5°, because the buffet 

was not established for this case. A spectral peak, however, is observed at 585 Hz. In addition, a 

spectral bump is observed between 40 and 200 Hz. The amplitude of this bump increased with 

increasing AoA and a remarkable spectral peak emerges at a low frequency near 100 Hz where the 

bump was detected. These peaks corresponded to the shock oscillation due to the buffet.  
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Fig. 7  Fourier spectra of shock motion with and without VGs and their estimated background 

spectra using lag-1 autocorrelation: DVG/HVG = 10.  
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Comparison of Figs 7b and 7c shows the buffet frequency (fB) is sensitive to AoA. The fB was 

80 Hz at AoA = 5° and this increased to 95 Hz at AoA = 6°. For all case, the PSD functions con-

tain higher harmonic ones. These higher harmonic oscillations determined the shape of the shock 

trajectory. In our experiments, the higher harmonic oscillations changed the shape of the shock 

trajectory from sinusoidal wave to triangle wave as shown in Figs. 5b and 5c.  

These results in terms of fB and its trend with AoA are similar to those reported by Jacquin et 

al (2009) and other researchers. Jacquin et al (2009) obtained PSD from unsteady pressure 

measurements with dynamic pressure transducers installed in OAT15A airfoil with c = 230 mm in 

the continuous closed-circuit transonic S3Ch wind tunnel. The scale of our airfoil was similar to 
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continuous closed-circuit transonic S3Ch wind tunnel. The scale of our airfoil was similar to that 

of their model, so a similar fB was observed in both experiments after establishing the buffet. Inter-

estingly, a spectral peak was also observed near 600 Hz without the buffet in their experiment at 

AoA = 3°. This is similar to our experiment as shown in Fig. 7a. Detail investigation of the 

schlieren movies revealed that this shock oscillation synchronized with the incident pressure 

waves from downstream side. This incident pressure wave could be generated by two reasons: One 

is the flow itself and the other is the downstream configuration of the wind tunnel facility. We 

believe this incident pressure waves were originated from flow itself such as a trailing edge vor-

tices, because this higher spectral peak was observed in the two different wind tunnels. Hermes et 

al. (2013) numerically investigated the upstream traveling pressure waves over a supercritical 

airfoil in a cruise condition at AoA = 0°. Weak pressure waves were generated in the vicinity of 

the trailing edge of the airfoil associated with the large-scale structures in the boundary layer. 

These weak pressure waves gathered with traveling upstream and induced periodic shock forma-

tion. Similar trends were observed in our experiment at AoA = 0°. Shock formation frequency in 

our experiment was similar to the higher significant frequency of 585 Hz observed before estab-

lishing the buffet at AoA = 4°. This implied that the higher spectral peak was originated from the 

Kutta waves. 

Referring second to the cases with VGs, there is no remarkable change between with and 

without VGs at AoA = 4°. With increasing AoA, the spectral bump observed between 40 and 200 

Hz gradually emerged to be the spectral peak due to the shock-buffet. The peak power of fB in the 

case with VGs at AoA = 7° was quite smaller than that without VGs at AoA = 6°. In addition, the 

power containing in higher frequency increased with increasing AoA. The similar trend was ob-

served with changing the interval between 

the VGs. Figure 8 shows the PSD func-

tions for the various DVG. The spectral 

bump gradually emerged with increasing 

DVG. The frequencies where the maximum 

powers were observed near fB seemed to 

be varied with changing DVG. 

Thus, the Fourier analysis well ex-

tracted the characteristics of the shock 

without VGs (AoA = 4°)
with VGs (AoA=5° )
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Fig. 9  Comparison of PSD with and with-

out VGs before establishing the buffet. 

DVG/HVG was 10 for the case with VGs. 
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motion having the periodic oscillation. Even for the cases with VGs, the analysis captured some 

trends due to the VGs, AoA and DVG. The Fourier analysis, however, was not enough to extract the 

characteristics of the shock oscillation in the cases with VGs, because the shock oscillations for 

some cases with VGs were not periodic (see Figs 5f, 5g and 6c). The Fourier analysis is difficult to 

accurately extract the characteristics of the non-periodic motions.  

Figure 9 shows the comparison of PSD functions with and without VGs before establishing 

the shock-buffet. There is no remarkable difference of the PSD functions between with and with-

out VGs in low frequency regime around 100 Hz. However, the shock oscillation with VGs at 

AoA = 5°, where the buffet was controlled by installing the VGs, had a low frequency component 

like a buffet (see Fig. 5e). The Fourier analysis does not well recognize this low frequency oscilla-

tion, because the oscillation intermittently appeared in the cycle. Such a non-periodic component is 

difficult to be classified by using the Fourier analysis. Therefore, we applied the wavelet analysis 

to the shock trajectories. 

4.3 Wavelet Spectrogram 

Figure 10 shows a typical wavelet power spectrogram of the shock trajectory in the case with 

VGs at AoA = 5°. The interval DVG/HVG was 10. The wavelet power was indicated by color con-

tours in the lower right side figure of Fig. 10. The horizontal axis is the Fourier frequency convert-

ed from the wavelet frequency using Eq. 3 and the vertical axis is the time after starting the image 

acquisition, respectively. The thick contour encloses the regions of greater than 95% confidence 

level for the background spectrum. Dashed lines shows fB observed without VGs. The left figure 

indicates the shock trajectory corresponded to the spectrogram and the upper right figure is the 

wavelet PSD function evaluated by integrating the power through the time direction in the wavelet 

spectrogram. The wavelet PSD function is compared with the Fourier one.  

For this case, the installation of the VGs controlled the shock-buffet. The upper right side fig-

ure of Fig. 10 shows the shock wave mainly oscillated with the high frequency synchronized with 

the incident pressure waves as mentioned in Figs. 5a and 5d. The shock oscillation, however, in-

termittently included the low frequency component like the shock-buffet, though its amplitude was 

quite small. The low frequency component was remarkable for 0.1 ≤ t ≤ 0.2 as shown in the left 

figure of Fig. 10. The wavelet spectrogram with the significant test well represented these charac-

teristics. The significant spectral band is observed around f = 600 Hz through the whole test dura-
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tion. In addition, the significant spectral bans are observed around fB and its second harmonic one 

for 0.1 ≤ t ≤ 0.2. Thus, the wavelet analysis is able to extract such non-periodic features from the 

shock oscillation. 

Figure 11 shows the wavelet power spectrograms with and without VGs for various AoA. 

The left column indicates the spectrograms without VGs and the right column indicates those with 

VGs (DVG/HVG = 10). The dashed lines in Fig. 11 show fB observed without VGs at the same AoA 

and the higher frequency of 585 Hz. Note that lighter shade areas in these figures are the cones of 

influence where edge effects might distort the spectrograms.  

Referring first to the cases without VGs in the left column of Fig. 11, the features of the 

spectrograms coincide with those of Fourier spectra as shown in Figs. 7a-7c. The significant 

spectral band is observed around f = 600 Hz at AoA = 4°. This corresponds to the spectral peak at 

585 Hz in Fig. 7a. After establishing the buffet, two significant spectral bands appeared around 

100 Hz and 200 Hz in Figs. 11b and 11c. These correspond to the spectral peaks due to the buffet 

at f = 80 Hz and 160 Hz in Fig. 7b, and 95 Hz and 190 Hz in Fig. 7c, respectively. Both the 

oscillations at f ~ 600 Hz and at f ~ 100 Hz are quite periodic because the significant bands are 

observed in all the measuring time. In addition to these spectral bands, a few significant spots are 

observed at AoA = 4° between f = 60 Hz and 200 Hz before establishing the buffet. We believe 

that these intermittent spots were the origin of the buffet.  
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Fig. 10  Typical wavelet spectrogram corresponded to shock trajectory in the case 

with VGs: DVG/HVG = 10 and AoA = 5°. 
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Referring second to the cases with VGs in the right column of Fig. 11, there is no remarkable 

change in the wavelet spectrogram at AoA = 4° between with and without VGs. The installation of 

the VGs was no effects on the shock motion before establishing the buffet. On the other hand, the 

significant spectral bands around f = 100 Hz and 200 Hz disappeared with installing the VGs for 

AoA ≥ 5°. Instead of this, the significant spectral spots appeared between f = 60 Hz to 200 Hz. The  

            

            

            

            
 

Fig. 11  Wavelet power spectrogram with and without VGs for various AoA =5°: DVG/HVG = 10. 
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       Fig. 12  Wavelet power spectrograms for various DVG/HVG: AoA =5°. 
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rate of appearing the 95% confidence regions at AoA = 5° was remarkably higher than those at 

AoA = 4°. Their amplitude were also higher than those at AoA = 4°. These implied that the instal-

lation of the VGs did not perfectly suppress the low frequency shock-oscillation due to the buffet. 

Near the onset of the buffet as shown in Fig. 11f, the shock oscillation included the high am-

plitude oscillation at f = 60~80 Hz, which was lower than fB (= 95 Hz) at this AoA = 6°. The 

bandwidth became narrow with increasing AoA to 7°. This indicates that the shock oscillation 

became periodic at AoA = 7°.  

Figure 12 shows the effects of DVG/HVG on the wavelet spectrograms. The angle of attack was 

5°. The dashed lines in Fig. 12 shows fB of 80 Hz and its second harmonic of 160 Hz observed 

without VGs at the same AoA. The higher significant frequency of 585 Hz is also indicated by the 

dashed lines.  

At DVG/HVG = 80, the buffet oscillation was nearly periodic as similar to that without the VGs 

(DVG/HVG = ∞). Its amplitude, however, was lower than that without the VGs. The installation of 

the VGs affects the SWBLI even at such the large interval of DVG/HVG = 80. The shock motion 

was quite different for the cases between at DVG/HVG = 80 and 40. At DVG/HVG = 40, the signifi-

cant regions spread at lower frequencies than fB (= 80 Hz). This case was onset of the shock-buffet. 

Figures 12c and 11f imply the cycle of the shock oscillations near the onset of the buffet became 

slower than those with the buffet. 

For DVG/HVG ≤ 20, the shock oscillation near fB appeared intermittently. The significant spots 

appeared between fB and its second harmonic. Comparison of Figs. 12d and 12e shows that the 

intermittency of appearing the significant spots between fB and its second harmonic was less af-

fected by DVG/HVG. The amplitude of the significant regions was slightly decreased with decreas-

ing DVG/HVG. Thus, the wavelet analysis with the significance test gave quantitative measure of 

change in the non-periodic shock motions, mainly caused by installing the VGs, as well as the 

periodic shock motions.  

5 Conclusion 

We experimentally investigated the effects of the installation of the VGs on two-dimensional 

shock-buffets. The flowfields around a supercritical airfoil with and without VGs were visualized 

at Re = 5 x 106 by using the fast-framing focusing schlieren. The focusing schlieren visualizations 

revealed that the shock-buffet appeared at AoA ≥ 5° without VGs. The remarkable shock oscilla-
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tion due to the buffet disappeared with installing the VGs even for much higher AoA of 6°. Flow 

three-dimensionality became also remarkable with installing the VGs even for the two-

dimensional wing experiments. Narrow DOF in the present visualization system was key to accu-

rately capture the shock oscillations for the cases with the VGs. 

Based on the time-series schlieren images, we analyzed the shock motions by using Fourier 

and wavelet analyses. Fourier analysis well extracted the buffet frequency and its amplitude for the 

periodical shock oscillations observed mainly in the cases without the VGs. The buffet frequency 

was 80 Hz in the present airfoil at AoA = 5°. This increased to 95 Hz with increasing AoA = 6°. 

The Fourier analysis, however, is difficult to extract the characteristics of the shock oscillation 

including non-periodic components which observed mainly in the cases with VGs. 

The wavelet analysis using Morlet wavelet function successfully extracted the characteristics 

of the non-periodic shock oscillation appearing in the cases with VGs. The wavelet spectrograms 

show that the 95% confidence regions appeared intermittently between the buffet frequency and its 

second harmonic when VG controlled the shock-buffet. Its amplitude was quite lower than those 

in the buffet cases. The rate of appearing the confidence regions increased with increasing both 

AoA and DVG/HVG. The power of this component also increased with increasing them. At the onset 

of the buffet, the dominated frequency of the shock motion shifted toward to a lower frequency 

than the buffet frequency in the case with VGs. Thus, combination of the fast-framing focusing 

schlieren visualization and the wavelet analysis of them help to develop our understanding of the 

shock-buffet and the effects of the installation of VGs.  

Appendix 

A. Effect of Buffet Frequency on Estimated Background Spectra  

Equation 4 used the lag-1 autocorrelation α to estimate background spectrum. After establish-

ing the buffet, α increased compared with that before establishing the buffet. This resulted in the 

overestimation of background at f << fB. Figure A1 shows the typical effect of the frequency com-

ponent due to the buffet on the estimated background spectrum in the case with VGs at AoA = 6°. 

The interval DVG/HVG was 10. In this case, the shock oscillation was non-periodic and the buffet 

oscillation intermittently generated as shown in Fig. 5f. The red dashed lines are the background 

spectrum using α estimated from non-filtered shock trajectory data which includes the frequency 
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component due to the buffet. On the 

other hand, the blue ones are using α 

estimated from band-stopped filtered 

data from 50 Hz to 150 Hz, which 

have no frequency component due to 

the buffet. The background spectrum 

using the filtered data well agrees 

with the measured data even in the 

very lower frequency region. 

Therefore, we conclude that the 

overestimation of the background 

spectra at very low frequency is 

caused by the frequency component 

due to the buffet.  

Figure A2 shows the effects of 

this overestimation on the significant 

regions in the wavelet spectrogram. 

The significance regions were 

determined by the background 

spectrum using α estimated from the 

non-filtered shock trajectory data for 

the upper figure, and those were from 

the filtered data for the lower figure, respectively. Although the significant regions are slightly 

extended for the background estimated from the filtered data, overall the overestimation has no 

remarkable effect on our conclusion. The background spectrum estimated from the filtered data 

might be appropriate as the background spectrum. The buffet frequency, however, is difficult to 

determine for the cases with VGs or the buffet onset. Therefore, we chose the non-filtered data to 

estimate the background.  
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Fig. A1  Effect of frequency component due to 

buffet on the estimated background spectrum. 

  

    

    

 

Fig. A2  Effects of the overestimation of the back-

ground at very low frequency region on the signifi-

cant regions in the wavelet spectrogram.  
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