102 research outputs found

    Role of covalency in the ground state properties of perovskite ruthenates: A first principle study using local spin density approximations

    Get PDF
    We investigate the electronic structure of SrRuO3 and CaRuO3 using full potential linearized augmented plane wave method within the local spin density approximations. The ferromagnetic ground state in SrRuO3 could exactly be described in these calculations and the calculated spin magnetic moment is found to be close to the experimentally observed values. Interestingly, the spin polarized calculations for CaRuO3 exhibit large spin moment as observed in the experiments but the magnetic ground state has higher energy than that in the non-magnetic solution. Various calculations for different structural configurations indicate that Ca-O covalency plays the key role in determining the electronic structure and thereby the magnetic ground state in this system.Comment: 8 figure

    Decoupled CuO_2 and RuO_2 layers in superconducting and magnetically ordered RuSr_2GdCu_2O_8

    Get PDF
    Comprehensive measurements of dc and ac susceptibility, dc resistance, magnetoresistance, Hall resistivity, and microwave absorption and dispersion in fields up to 8 T have been carried out on RuSr_2GdCu_2O_8 with the aim to establish the properties of RuO_2 and CuO_2 planes. At ~130 K, where the magnetic order develops in the RuO_2 planes, one observes a change in the slope of dc resistance, change in the sign of magnetoresistance, and the appearance of an extraordinary Hall effect. These features indicate that the RuO_2 planes are conducting. A detailed analysis of the ac susceptibility and microwave data on both, ceramic and powder samples show that the penetration depth remains frequency dependent and larger than the London penetration depth even at low temperatures. We conclude that the conductivity in the RuO_2 planes remains normal even when superconducting order is developed in the CuO_2 planes below \~45 K. Thus, experimental evidence is provided in support of theoretical models which base the coexistence of superconductivity and magnetic order on decoupled CuO_2 and RuO_2 planes.Comment: 11 pages, 11 figures, submitted to PR

    Histaminergic system in brain disorders: lessons from the translational approach and future perspectives

    Get PDF
    Histamine and its receptors were first described as part of immune and gastrointestinal systems, but their presence in the central nervous system and importance in behavior are gaining more attention. The histaminergic system modulates different processes including wakefulness, feeding, and learning and memory consolidation. Histamine receptors (H1R, H2R, H3R, and H4R) belong to the rhodopsin-like family of G protein-coupled receptors, present constitutive activity, and are subjected to inverse agonist action. The involvement of the histaminergic system in brain disorders, such as Alzheimer’s disease, schizophrenia, sleep disorders, drug dependence, and Parkinson’s disease, is largely studied. Data obtained from preclinical studies point antagonists of histamine receptors as promising alternatives to treat brain disorders. Thus, clinical trials are currently ongoing to assess the effects of these drugs on humans. This review summarizes the role of histaminergic system in brain disorders, as well as the effects of different histamine antagonists on animal models and humans

    A new ferrocene-containing charge-transfer salt, (TTF) [Fe(C H -CH(CH )NHCOCH SO ) ]

    No full text
    A novel ferrocene-containing dianion, Fe(C H - CH(CH )NHCOCH SO ) (1), has been prepared. The oxidation potential of the PPh salt is + 0.35 V (vs. SCE in PhCN), indicating that it is a stronger donor than TTF (tetrathiafulvalene) by + 0.03 V. The dianion provided a TTF salt, the structure and physical properties of which are reported. © 2012 Elsevier B.V. All rights reserved

    A new ferrocene-containing charge-transfer salt, (TTF) [Fe(C H -CH(CH )NHCOCH SO ) ]

    No full text
    A novel ferrocene-containing dianion, Fe(C H - CH(CH )NHCOCH SO ) (1), has been prepared. The oxidation potential of the PPh salt is + 0.35 V (vs. SCE in PhCN), indicating that it is a stronger donor than TTF (tetrathiafulvalene) by + 0.03 V. The dianion provided a TTF salt, the structure and physical properties of which are reported. © 2012 Elsevier B.V. All rights reserved
    corecore