467 research outputs found

    Note on a Micropolar Gas-Kinetic Theory

    Full text link
    The micropolar fluid mechanics and its transport coefficients are derived from the linearized Boltzmann equation of rotating particles. In the dilute limit, as expected, transport coefficients relating to microrotation are not important, but the results are useful for the description of collisional granular flow on an inclined slope. (This paper will be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer))Comment: 15 pages, 0 figure. To be published in Traffic and Granular Flow 2001 edited by Y.Sugiyama and D. E. Wolf (Springer

    Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction

    Full text link
    Estimating uncertainty of camera parameters computed in Structure from Motion (SfM) is an important tool for evaluating the quality of the reconstruction and guiding the reconstruction process. Yet, the quality of the estimated parameters of large reconstructions has been rarely evaluated due to the computational challenges. We present a new algorithm which employs the sparsity of the uncertainty propagation and speeds the computation up about ten times \wrt previous approaches. Our computation is accurate and does not use any approximations. We can compute uncertainties of thousands of cameras in tens of seconds on a standard PC. We also demonstrate that our approach can be effectively used for reconstructions of any size by applying it to smaller sub-reconstructions.Comment: ECCV 201

    Stress and Strain in Flat Piling of Disks

    Full text link
    We have created a flat piling of disks in a numerical experiment using the Distinct Element Method (DEM) by depositing them under gravity. In the resulting pile, we then measured increments in stress and strain that were associated with a small decrease in gravity. We first describe the stress in terms of the strain using isotropic elasticity theory. Then, from a micro-mechanical view point, we calculate the relation between the stress and strain using the mean strain assumption. We compare the predicted values of Young's modulus and Poisson's ratio with those that were measured in the numerical experiment.Comment: 9 pages, 1 table, 8 figures, and 2 pages for captions of figure

    A Fisher-Rao metric for paracatadioptric images of lines

    Get PDF
    In a central paracatadioptric imaging system a perspective camera takes an image of a scene reflected in a paraboloidal mirror. A 360° field of view is obtained, but the image is severely distorted. In particular, straight lines in the scene project to circles in the image. These distortions make it diffcult to detect projected lines using standard image processing algorithms. The distortions are removed using a Fisher-Rao metric which is defined on the space of projected lines in the paracatadioptric image. The space of projected lines is divided into subsets such that on each subset the Fisher-Rao metric is closely approximated by the Euclidean metric. Each subset is sampled at the vertices of a square grid and values are assigned to the sampled points using an adaptation of the trace transform. The result is a set of digital images to which standard image processing algorithms can be applied. The effectiveness of this approach to line detection is illustrated using two algorithms, both of which are based on the Sobel edge operator. The task of line detection is reduced to the task of finding isolated peaks in a Sobel image. An experimental comparison is made between these two algorithms and third algorithm taken from the literature and based on the Hough transform

    Euclidean Structure from N>=2 Parallel Circles: Theory and Algorithms

    Get PDF
    International audienceOur problem is that of recovering, in one view, the 2D Euclidean structure, induced by the projections of N parallel circles. This structure is a prerequisite for camera calibration and pose computation. Until now, no general method has been described for N > 2. The main contribution of this work is to state the problem in terms of a system of linear equations to solve.We give a closed-form solution as well as bundle adjustment-like refinements, increasing the technical applicability and numerical stability. Our theoretical approach generalizes and extends all those described in existing works for N = 2 in several respects, as we can treat simultaneously pairs of orthogonal lines and pairs of circles within a unified framework. The proposed algorithm may be easily implemented, using well-known numerical algorithms. Its performance is illustrated by simulations and experiments with real images

    Cdk5 phosphorylation of ErbB4 is required for tangential migration of cortical interneurons.

    Get PDF
    Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals

    Autocalibration from planar scenes

    Full text link

    Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes

    Get PDF
    This paper presents a numerical investigation on the behavior of three dimensional granular materials during continuous rotation of principal stress axes using the discrete element method. A dense specimen has been prepared as a representative element using the deposition method and subjected to stress rotation at different deviatoric stress levels. Significant plastic deformation has been observed despite that the principal stresses are kept constant. This contradicts the classical plasticity theory, but is in agreement with previous laboratory observations on sand and glass beads. Typical deformation characteristics, including volume contraction, deformation non-coaxiality, have been successfully reproduced. After a larger number of rotational cycles, the sample approaches the ultimate state with constant void ratio and follows a periodic strain path. The internal structure anisotropy has been quantified in terms of the contact-based fabric tensor. Rotation of principal stress axes densifies the packing, and leads to the increase in coordination numbers. A cyclic rotation in material anisotropy has been observed. The larger the stress ratio, the structure becomes more anisotropic. A larger fabric trajectory suggests more significant structure re-organization when rotating and explains the occurrence of more significant strain rate. The trajectory of the contact-normal based fabric is not centered in the origin, due to the anisotropy in particle orientation generated during sample generation which is persistent throughout the shearing process. The sample sheared at a lower intermediate principal stress ratio (b=0.0) (b=0.0) has been observed to approach a smaller strain trajectory as compared to the case b=0.5 b=0.5 , consistent with a smaller fabric trajectory and less significant structural re-organisation. It also experiences less volume contraction with the out-of plane strain component being dilative
    • …
    corecore