17 research outputs found

    Importance of radiative transfer processes in urban climate models: A study based on the PALM 6.0 model system

    Get PDF
    Including radiative transfer processes within the urban canopy layer into microscale urban climate models (UCMs) is essential to obtain realistic model results. These processes include the interaction of buildings and vegetation with shortwave and longwave radiation, thermal emission, and radiation reflections. They contribute differently to the radiation budget of urban surfaces. Each process requires different computational resources and physical data for the urban elements. This study investigates how much detail modellers should include to parameterize radiative transfer in microscale building-resolving UCMs. To that end, we introduce a stepwise parameterization method to the Parallelized Large-eddy Simulation Model (PALM) system 6.0 to quantify individually the effects of the main radiative transfer processes on the radiation budget and on the flow field. We quantify numerical simulations of both simple and realistic urban configurations to identify the major and the minor effects of radiative transfer processes on the radiation budget. The study shows that processes such as surface and vegetation interaction with shortwave and longwave radiation will have major effects, while a process such as multiple reflections will have minor effects. The study also shows that radiative transfer processes within the canopy layer implicitly affect the incoming radiation since the radiative transfer model is coupled to the radiation model. The flow field changes considerably in response to the radiative transfer processes included in the model. The study identified those processes which are essentially needed to assure acceptable quality of the flow field. These processes are receiving radiation from atmosphere based on the sky-view factors, interaction of urban vegetation with radiation, radiative transfer among urban surfaces, and considering at least single reflection of radiation. Omitting any of these processes may lead to high uncertainties in the model results.publishedVersio

    The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives

    Get PDF
    In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based 5 code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded 10 Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.DFG/RA/617/3DFG/RA/617/6DFG/RA/617/16DFG/RA/617/27-

    Sensitivity analysis of the PALM model system 6.0 in the urban environment

    Get PDF
    Sensitivity of the PALM model 6.0 with respect to land-surface and building properties is tested in a real urban environment in the vicinity of a typical crossroads in a densely built-up residential area in Prague, Czech Republic. The turbulence-resolving PALM is able to simulate the urban boundary layer flow for realistic setups. Besides an accurate representation of the relevant physical processes, the model performance also depends on the input data describing the urban setup, namely the building and land-surface properties. Two types of scenario are employed. The first one is the synthetic scenarios altering mainly surface and material parameters such as albedo, emissivity or wall conductivity, testing sensitivity of the model simulations to potentially erroneous input data. Second, urbanistic-type scenarios are analysed, in which commonly considered urban heat island mitigation measures such as greening of the streets or changing surface materials are applied in order to assess the limits of the effects of a particular type of scenario. For the synthetic scenarios, surface parameters used in radiation balance equations are found to be the most sensitive overall followed by the volumetric heat capacity and thermal conductivity of walls. Other parameters show a limited average effect; however, some can still be significant during some parts of the day, such as surface roughness in the morning hours. The second type, the urbanistic scenarios, shows urban vegetation to be the most effective measure, especially when considering both physical and biophysical temperature indicators. The influence of both types of scenario was also tested for air quality, specifically PM2.5 dispersion, which generally shows opposite behaviour to that of thermal indicators; i.e. improved thermal comfort brings deterioration of PM2.5 concentrations. © 2021 Michal Belda et al

    Development of an atmospheric chemistry model coupled to the PALM model system 6.0: Implementation and first applications

    Get PDF
    In this article we describe the implementation of an online-coupled gas-phase chemistry model in the turbulence-resolving PALM model system 6.0 (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name). The new chemistry model is implemented in the PALM model as part of the PALM-4U (PALM for urban applications) components, which are designed for application of the PALM model in the urban environment (Maronga et al., 2020). The latest version of the Kinetic PreProcessor (KPP, 2.2.3) has been utilized for the numerical integration of gas-phase chemical reactions. A number of tropospheric gas-phase chemistry mechanisms of different complexity have been implemented ranging from the photostationary state (PHSTAT) to mechanisms with a strongly simplified volatile organic compound (VOC) chemistry (e.g. the SMOG mechanism from KPP) and the Carbon Bond Mechanism 4 (CBM4; Gery et al., 1989), which includes a more comprehensive, but still simplified VOC chemistry. Further mechanisms can also be easily added by the user. In this work, we provide a detailed description of the chemistry model, its structure and input requirements along with its various features and limitations. A case study is presented to demonstrate the application of the new chemistry model in the urban environment. The computation domain of the case study comprises part of Berlin, Germany. Emissions are considered using street-type-dependent emission factors from traffic sources. Three chemical mechanisms of varying complexity and one no-reaction (passive) case have been applied, and results are compared with observations from two permanent air quality stations in Berlin that fall within the computation domain. Even though the feedback of the model's aerosol concentrations on meteorology is not yet considered in the current version of the model, the results show the importance of online photochemistry and dispersion of air pollutants in the urban boundary layer for high spatial and temporal resolutions. The simulated NOx and O3 species show reasonable agreement with observations. The agreement is better during midday and poorest during the evening transition hours and at night. The CBM4 and SMOG mechanisms show better agreement with observations than the steady-state PHSTAT mechanism. © 2021 Copernicus GmbH. All rights reserved

    PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model

    Get PDF
    Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM), describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs). Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL). The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement) are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the sensitivity of the results to uncertainties in the material parameters, the domain size, and the general effect of the USM itself. The first version of the USM is limited to the processes most relevant to the study of summer heat waves and serves as a basis for ongoing development which will address additional processes of the urban environment and lead to improvements to extend the utilization of the USM to other environments and conditions

    Development of a new urban climate model based on the model PALM – Project overview, planned work, and first achievements

    Get PDF
    In this article we outline the model development planned within the joint project Model-based city planning and application in climate change (MOSAIK). The MOSAIK project is funded by the German Federal Ministry of Education and Research (BMBF) within the framework Urban Climate Under Change ([UC]2) since 2016. The aim of MOSAIK is to develop a highly-efficient, modern, and high-resolution urban climate model that allows to be applied for building-resolving simulations of large cities such as Berlin (Germany). The new urban climate model will be based on the well-established large-eddy simulation code PALM, which already has numerous features related to this goal, such as an option for prescribing Cartesian obstacles. In this article we will outline those components that will be added or modified in the framework of MOSAIK. Moreover, we will discuss the everlasting issue of acquisition of suitable geographical information as input data and the underlying requirements from the model’s perspective

    Test of gas phase chemistry mechanisms for a LES model with online coupled chemistry

    Get PDF
    To accurately simulate dispersion, chemical transformation and removal of air pollutants in the urban canopy layer, fine-scale turbulence-resolving simulations are required that can explicitly resolve building structures and street canyons. Large-Eddy Simulation (LES) models explicitly resolve the dominant scales of turbulence in the atmospheric boundary layer and therefore, have the potential to capture the turbulent motion within street canyons as well as the observed short term fluctuations of pollutant concentrations. LES models including chemical transformation of pollutants are so far barely applied for urban air quality studies. Within the joint project MOSAIK (Model-based city planning and application in climate change) a new urban microscale model including gas Phase chemistry and aerosols, PALM-4U, has been developed. The state-of-the-art LES model PALM (Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015) is used as core model for PALM-4U. In order to obtain the necessary flexibility in the choice of the chemistry mechanisms the gas-phase chemistry was implemented using the Kinetic PreProcessor KPP. Due to the very high computational demands of an LES-based model, compromises are required with respect to the degree of detail of the gas-phase chemistry mechanisms. A number of chemical mechanisms with varying complexity and detail that ranges from a strongly reduced mechanism which includes only a simple O3-NO2-NO-VOC-HOx chemistry and a small number of products to large mechanisms which are typically used in regional air quality models were implemented into PALM-4U. The performance of different gas-phase chemistry schemes of different complexity within the LES model PALM-4U is tested and compared
    corecore