13 research outputs found

    Discovery of An au-scale Excess in Millimeter Emission from the Protoplanetary Disk around TW Hya

    Get PDF
    We report the detection of an excess in dust continuum emission at 233 GHz (1.3 mm in wavelength) in the protoplanetary disk (PPD) around TW Hya revealed through high-sensitivity observations at ~3 au resolution with the Atacama Large Millimeter/submillimeter Array. The sensitivity of the 233 GHz image has been improved by a factor of 3 with regard to that of our previous cycle 3 observations. The overall structure is mostly axisymmetric, and there are apparent gaps at 25 and 41 au as previously reported. The most remarkable new finding is a few astronomical-unit-scale excess emission in the southwest part of the PPD. The excess emission is located at 52 au from the disk center and is 1.5 times brighter than the surrounding PPD at a significance of 12σ. We performed a visibility fitting to the extracted emission after subtracting the axisymmetric PPD emission and found that the inferred size and the total flux density of the excess emission are 4.4 × 1.0 au and 250 μJy, respectively. The dust mass of the excess emission corresponds to 0.03 M ⊕ if a dust temperature of 18 K is assumed. Because the excess emission can also be marginally identified in the Band 7 image at almost the same position, the feature is unlikely to be a background source. The excess emission can be explained by a dust clump accumulated in a small elongated vortex or a massive circumplanetary disk around a Neptune-mass-forming planet

    Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome

    Get PDF
    Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of α-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient, manifesting with mild congenital muscular dystrophy (CMD) and severe mental retardation. These mutations are likely to retain some residual LARGE glycosyltransferase activity as indicated by residual α-dystroglycan glycosylation in patient cells. We hypothesized that more severe LARGE mutations are associated with a more severe CMD phenotype in humans. Here we report a 63-kb intragenic LARGE deletion in a family with Walker-Warburg syndrome (WWS), which is characterized by CMD, and severe structural brain and eye malformations. This finding demonstrates that LARGE gene mutations can give rise to a wide clinical spectrum, similar as for other genes that have a role in the post-translational modification of the α-dystroglycan protein

    Planetary Migration in Protoplanetary Disks

    Get PDF
    The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary disks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields

    High Spatial Resolution Observations of Molecular Lines toward the Protoplanetary Disk around TW Hya with ALMA

    No full text
    We present molecular line observations of ¹³CO and C¹⁸O J=3−2, CN N=3−2, and CS J=7−6 lines in the protoplanetary disk around TW Hya at a high spatial resolution of ∼9 au (angular resolution of 0 15), using the Atacama Large Millimeter/Submillimeter Array. A possible gas gap is found in the deprojected radial intensity profile of the integrated C¹⁸O line around a disk radius of ∼58 au, slightly beyond the location of the au-scale dust clump at ∼52 au, which resembles predictions from hydrodynamic simulations of planet–disk interaction. In addition, we construct models for the physical and chemical structure of the TW Hya disk, taking account of the dust surface density profile obtained from high spatial resolution dust continuum observations. As a result, the observed flat radial profile of the CN line intensities is reproduced due to a high dust-to-gas surface density ratio inside ∼20 au. Meanwhile, the CO isotopologue line intensities trace high temperature gas and increase rapidly inside a disk radius of ∼30 au. A model with either CO gas depletion or depletion of gas-phase oxygen elemental abundance is required to reproduce the relatively weak CO isotopologue line intensities observed in the outer disk, consistent with previous atomic and molecular line observations toward the TW Hya disk. Further observations of line emission of carbon-bearing species, such as atomic carbon and HCN, with high spatial resolution would help to better constrain the distribution of elemental carbon abundance in the disk gas
    corecore