89 research outputs found

    Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms

    Get PDF
    Multiple studies have demonstrated the utility of chromosomal microarray (CMA) testing to identify clinically significant copy number alterations (CNAs) and copy-neutral loss-of-heterozygosity (CN-LOH) in myeloid malignancies. However, guidelines for integrating CMA as a standard practice for diagnostic evaluation, assessment of prognosis and predicting treatment response are still lacking. CMA has not been recommended for clinical work-up of myeloid malignancies by the WHO 2016 or the NCCN 2017 guidelines but is a suggested test by the European LeukaemiaNet 2013 for the diagnosis of primary myelodysplastic syndrome (MDS). The Cancer Genomics Consortium (CGC) Working Group for Myeloid Neoplasms systematically reviewed peer-reviewed literature to determine the power of CMA in (1) improving diagnostic yield, (2) refining risk stratification, and (3) providing additional genomic information to guide therapy. In this manuscript, we summarize the evidence base for the clinical utility of array testing in the workup of MDS, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and myeloproliferative neoplasms (MPN). This review provides a list of recurrent CNAs and CN-LOH noted in this disease spectrum and describes the clinical significance of the aberrations and how they complement gene mutation findings by sequencing. Furthermore, for new or suspected diagnosis of MDS or MPN, we present suggestions for integrating genomic testing methods (CMA and mutation testing by next generation sequencing) into the current standard-of-care clinical laboratory testing (karyotype, FISH, morphology, and flow)

    Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group

    Get PDF
    Structural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide evaluation for copy number abnormalities (CNAs) is at present performed by karyotype analysis which has low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray (CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there are currently no guidelines how to best incorporate this technology into clinical testing algorithms for neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical significance in diagnosis, prognosis and treatment decisions in AML

    Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes

    Get PDF
    TP53 mutations are associated with adverse outcomes and shorter response to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS). Limited data have evaluated the impact of the type, number, and patterns of TP53 mutations in response outcomes and prognosis of MDS. We evaluated the clinicopathologic characteristics, outcomes, and response to therapy of 261 patients with MDS and TP53 mutations. Median age was 68 years (range, 18-80 years). A total of 217 patients (83%) had a complex karyotype. TP53 mutations were detected at a median variant allele frequency (VAF) of 0.39 (range, 0.01-0.94). TP53 deletion was associated with lower overall response rate (ORR) (odds ratio, 0.3; P = .021), and lower TP53 VAF correlated with higher ORR to HMAs. Increase in TP53 VAF at the time of transformation was observed in 13 patients (61%), and previously undetectable mutations were observed in 15 patients (65%). TP53 VAF was associated with worse prognosis (hazard ratio, 1.02 per 1% VAF increase; 95% confidence interval, 1.01-1.03; P \u3c .001). Integration of TP53 VAF and karyotypic complexity identified prognostic subgroups within TP53-mutant MDS. We developed a multivariable model for overall survival that included the revised International Prognostic Scoring System (IPSS-R) categories and TP53 VAF. Total score for each patient was calculated as follows: VAF TP53 + 13 × IPSS-R blast score + 16 × IPSS-R cytogenetic score + 28 × IPSS-R hemoglobin score + 46 × IPSS-R platelet score. Use of this model identified 4 prognostic subgroups with median survival times of not reached, 42.2, 21.9, and 9.2 months. These data suggest that outcomes of patients with TP53-mutated MDS are heterogeneous and that transformation may be driven not only by TP53 but also by other factors

    Composite mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a clinicopathologic and molecular study

    Get PDF
    Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) share many features and both arise from CD5+ B-cells, their distinction is critical as MCL is a much more aggressive neoplasm. Rarely, composite MCL and CLL/SLL have been reported. Little is known, about the nature of these cases and in particular the clonal relationship of the two lymphomas. Eleven composite MCL and CLL/SLL cases were identified. The clinical, morphologic and immunophenotypic features of the MCL and CLL/SLL were characterized. Immunoglobulin heavy chain (IGH) gene analysis was performed on microdissected MCL and CLL/SLL components to assess their clonal relationship. Ten patients had lymphadenopathy, and 7 patients had bone marrow involvement. The MCL component had the following growth patterns: in situ (n=1), mantle zone (n=3), nodular and diffuse (n=3), diffuse (n=3), and interstitial in the bone marrow (the only patient without lymphadenopathy) (n=1); 6 MCL had blastoid or pleomorphic and 5 classical cytologic features. The CLL/SLL component was internodular (n=9) or diffuse (n=2). All MCL were CD5+ and cyclin D1+ with t(11;14) translocation. All CLL/SLL were CD5+, CD23+ and negative for cyclin D1 or t(11;14). IGH gene analysis showed that the MCL and CLL/SLL components displayed different sized fragments, indicating that the MCL and CLL/SLL are likely derived from different neoplastic B-cell clones. The lack of a clonal relationship between the MCL and CLL/SLL components suggests that the MCL and CLL/SLL represent distinct disease processes and do not share a common progenitor B-cell

    Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy

    Get PDF
    Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS

    CIViCdb 2022: evolution of an open-access cancer variant interpretation knowledgebase

    Get PDF
    CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC’s functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications
    corecore