2 research outputs found

    Stereodivergent cyclopropanation of unactivated alkenes with heme proteins

    Get PDF
    Cyclopropyl motifs are present in a variety of compounds important to pharmaceutical, agrochemical, and fragrance industries. The asymmetric synthesis of cyclopropanes is often performed under harsh conditions with toxic, precious metal chiral catalysts. In 2013, the first example of biocatalytic alkene cyclopropanation was reported, using an engineered cytochrome P450 enzyme [1]. Since then, several heme proteins were reported to cyclopropanate a variety of styrenyl alkenes [2], but none have been shown to asymmetrically cyclopropanate more challenging substrates such as unactivated, aliphatic alkenes using the native iron-heme cofactor. Here we report that heme proteins can cyclopropanate unactivated alkenes and that stereoselectivity and activity can be tuned by directed evolution. A few rounds of site-saturation mutagenesis and screening yielded four protein variants with high enantio- and diastereoselectivity for complementary isomers, enabling stereodivergent synthesis of aliphatic cyclopropanes. These iron-porphyrin proteins are fully genetically encoded, and the reactions can be performed under mild, aqueous conditions with whole cells or purified protein. The protein enhances the activity of the native iron-heme cofactor, giving access to a broad array of cyclopropanated products. This example showcases the ability to quickly and efficiently engineer proteins for non-natural biocatalytic function. [1] P.S. Coelho, E.M. Brustad, A. Kannan, F.H. Arnold, Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes., Science. 339 (2013) 307–10. [2] O.F. Brandenberg, R. Fasan, F.H. Arnold, Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions, Curr. Opin. Biotechnol. 38 (2017) in press

    A Landscape of Driver Mutations in Melanoma

    Get PDF
    Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which—RAC1, PPP6C, and STK19—harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.National Human Genome Research Institute (U.S.) (Large Scale Sequencing Program Grant U54 HG003067)Melanoma Research AllianceNational Cancer Institute (U.S.) (Support Grant CA-16672
    corecore