10 research outputs found

    Enhanced Strength and Ductility in Magnesium Matrix Composites Reinforced by a High Volume Fraction of Nano- and Submicron-Sized SiC Particles Produced by Mechanical Milling and Hot Extrusion

    Get PDF
    In the present study, Mg nanocomposites with a high volume fraction (10 vol %) of SiC particles were fabricated by two approaches: mechanical milling and mixing, followed by the powder consolidation steps, including isostatic cold pressing, sintering, and extrusion. A uniform distribution of the high content SiC particles in a fully dense Mg matrix with ultrafine microstructure was successfully achieved in the mechanically milled composites. The effect of nano- and submicron-sized SiC particles on the microstructure and mechanical properties of the nanocomposites was evaluated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), and X-ray diffractometry (XRD) were used to characterize microstructures of the milled and mixed composites. Mechanical behavior of the Mg composites was studied under nanoindentation and compressive loading to understand the effects the microstructural modification on the strength and ductility of the Mg/SiC composites. The mechanical properties of the composites showed a significant difference regarding the size and distribution of SiC particles in the Mg matrix. The enhanced strength and superior ductility achieved in the mechanically milled Mg composites are mainly ascribed to the effective load transfer between matrix and SiC particles, grain refinement of the matrix, and strengthening effects of the nano- and submicron-sized SiC particles.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische UniversitÀt Berli

    Development and Characterization of Mg-SiC Nanocomposite Powders Synthesized by Mechanical Milling

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Magnesium powder in micron scale and various volume fractions of SiC particles with an average diameter of 50 nm were co-milled by a high energy planetary ball mill for up to 25 h to produce Mg-SiC nanocomposite powders. The milled Mg-SiC nanocomposite powders were characterized by scanning electron microscopy (SEM) and laser particle size analysis (PSA) to study morphological evolutions. Furthermore, XRD, TEM, EDAX and SEM analyses were performed to investigate the microstructure of the magnesium matrix and distribution of SiC-reinforcement. It was shown that with addition of and increase in SiC nanoparticle content, finer particles with narrower size distribution are obtained after mechanical milling. The morphology of these particles also became more equiaxed at shorter milling times. The microstructural observation revealed that the milling process ensured uniform distribution of SiC nanoparticles in the magnesium matrix even with a high volume fraction, up to 10 vol%

    Cyclic deformation behavior of Mg–SiC nanocomposites on the macroscale and nanoscale

    Get PDF
    Metal‐ceramic nanocomposites are promising candidates for applications necessitating light weight and excellent fatigue resistance. We produced Mg–SiC nanocomposites from mechanically milled powders, yielding a homogeneous nanocrystalline structure and excellent quasistatic strength values. Little is known, however, about the fatigue behavior of such composites. Here, we used load increase tests on the macroscale to yield estimation values of the fatigue endurance limit. Fatigue strength increased significantly for the materials processed by the powder metallurgical route. We further investigated the cyclic deformation behavior under stress‐controlled conditions on the macroscale and nanoscale. Cyclic nanoindentation showed that indentation depth and cyclic plastic deformation decreased with increasing reinforcement content, hinting to a higher cyclic strength and corroborating the results from the macroscopic load increase tests. Our results therefore show that cyclic nanoindentation reliably determines the plastic deformation behavior of Mg nanocomposites offering the possibility of fast material analysis.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Cyclic deformation behavior of Mg–SiC nanocomposites on the macroscale and nanoscale

    Get PDF
    Metal-ceramic nanocomposites are promising candidates for applications necessitating light weight and excellent fatigue resistance. We produced Mg–SiC nanocomposites from mechanically milled powders, yielding a homogeneous nanocrystalline structure and excellent quasistatic strength values. Little is known, however, about the fatigue behavior of such composites. Here, we used load increase tests on the macroscale to yield estimation values of the fatigue endurance limit. Fatigue strength increased significantly for the materials processed by the powder metallurgical route. We further investigated the cyclic deformation behavior under stress-controlled conditions on the macroscale and nanoscale. Cyclic nanoindentation showed that indentation depth and cyclic plastic deformation decreased with increasing reinforcement content, hinting to a higher cyclic strength and corroborating the results from the macroscopic load increase tests. Our results therefore show that cyclic nanoindentation reliably determines the plastic deformation behavior of Mg nanocomposites offering the possibility of fast material analysis

    Enhanced Strength and Ductility in Magnesium Matrix Composites Reinforced by a High Volume Fraction of Nano- and Submicron-Sized SiC Particles Produced by Mechanical Milling and Hot Extrusion

    No full text
    In the present study, Mg nanocomposites with a high volume fraction (10 vol %) of SiC particles were fabricated by two approaches: mechanical milling and mixing, followed by the powder consolidation steps, including isostatic cold pressing, sintering, and extrusion. A uniform distribution of the high content SiC particles in a fully dense Mg matrix with ultrafine microstructure was successfully achieved in the mechanically milled composites. The effect of nano- and submicron-sized SiC particles on the microstructure and mechanical properties of the nanocomposites was evaluated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), and X-ray diffractometry (XRD) were used to characterize microstructures of the milled and mixed composites. Mechanical behavior of the Mg composites was studied under nanoindentation and compressive loading to understand the effects the microstructural modification on the strength and ductility of the Mg/SiC composites. The mechanical properties of the composites showed a significant difference regarding the size and distribution of SiC particles in the Mg matrix. The enhanced strength and superior ductility achieved in the mechanically milled Mg composites are mainly ascribed to the effective load transfer between matrix and SiC particles, grain refinement of the matrix, and strengthening effects of the nano- and submicron-sized SiC particles

    Effect of hot isostatic pressing on densification, microstructure and nanoindentation behaviour of Mg–SiC nanocomposites

    No full text
    The production of fully dense nanocomposites with a homogeneous distribution of nanoparticles through powder metallurgy (PM) techniques is challenging. Additionally to mechanical milling, pressing and sintering, a final consolidation process is needed to fully densify the nanocomposite. Hot isostatic pressing (HIP) is a promising alternative method to other hot forming processes to eliminate porosity in these PM parts. In contrast to hot extrusion, for instance, isotropic properties are achieved, and textures, as they are usually observed in Mg after uniaxial deformation, are avoided. Here, we evaluate the effect of HIP on the densification, microstructure and (nano)hardness of Mg-SiC nanocomposites. Even though density increased indeed, we observed no increase in the mechanical properties, due to significant heterogeneity in the microstructure. SiC-free regions with a higher grain size developed. Local nanohardness measurements of the HIPed Mg nanocomposite revealed that these regions had a significantly lower nanohardness than the SiC-containing regions. Under consideration of mechanisms reported to be active in Mg in the pressure and temperature regime we used, we conclude that grain growth is the most likely mechanism leading to the microstructure observed after HIP. This is driven by the thermodynamic pressure to decrease the grain boundary energy and facilitated by a slightly inhomogeneous distribution of SiC nanoparticles in the sintered nanocomposite

    Cyclic deformation behavior of Mg–SiC nanocomposites on the macroscale and nanoscale

    Get PDF
    Metal‐ceramic nanocomposites are promising candidates for applications necessitating light weight and excellent fatigue resistance. We produced Mg–SiC nanocomposites from mechanically milled powders, yielding a homogeneous nanocrystalline structure and excellent quasistatic strength values. Little is known, however, about the fatigue behavior of such composites. Here, we used load increase tests on the macroscale to yield estimation values of the fatigue endurance limit. Fatigue strength increased significantly for the materials processed by the powder metallurgical route. We further investigated the cyclic deformation behavior under stress‐controlled conditions on the macroscale and nanoscale. Cyclic nanoindentation showed that indentation depth and cyclic plastic deformation decreased with increasing reinforcement content, hinting to a higher cyclic strength and corroborating the results from the macroscopic load increase tests. Our results therefore show that cyclic nanoindentation reliably determines the plastic deformation behavior of Mg nanocomposites offering the possibility of fast material analysis

    Effect of SiC nanoparticles on manufacturing process, microstructure and hardness of Mg-SiC nanocomposites produced by mechanical milling and hot extrusion

    No full text
    The production of fully dense Mg-SiC nanocomposites with a homogeneous distribution of SiC nanoparticles through powder metallurgy techniques is still a challenging issue. We propose to combine sintering and hot extrusion of mechanically milled composite powders to encompass the known difficulties of conventional processing. Here, we report on the effect of SiC nanoparticle content on the compressibility, microstructure and hardness of SiC-Mg nanocomposites during the different consolidation steps. Cold-isostatic pressing, sintering and indirect hot extrusion were used for compaction and consolidation. Near dense Mg-SiC nanocomposites with 1 and 10 vol% SiC nanoparticles were successfully produced with a homogeneous distribution of the nanoparticles. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were used to characterise the microstructure of the powders and of the sintered and extruded Mg-SiC nanocomposites. Vickers microhardness tests were done to reveal the hardening effect after sintering and extrusion. The nanoparticles pin the grain boundaries and foster dynamic recrystallisation, so that a nanograined Mg matrix develops and is preserved even after the final consolidation step. The results further show a very good interface adherence between nanoparticles and matrix contributing to the high hardness of the nanocomposites

    Parents’ knowledge and socio-demographic determinants toward child’s restraint system use

    No full text
    Abstract Background Lack of protection or improper protection, is one of the most important reasons of child passenger’s death and injury in traffic crashes. Based on what we see on the roads, Iranian children are unrestrained inside the car. The aim of this study was to investigate children restrained system (CRS) use rate, its socio-demographic determinants and parents’ knowledge toward CRS use among Iranian parents. Methods Using multi-stage cluster sampling and direct in filed method of observation, the behavior of 700 children in cars was observed in the current cross-sectional study. Socio-demographic determinants and parents’ knowledge, toward using the CRS were evaluated using questionnaires. The study was performed from July to August 2019 in Tabriz city, northwestern Iran. Results The rate of child safety seat (CSS) use was 15.1% CI 95%:(12.5%,18.0%), and the rate of booster use was 0.6%; CI 95%:(4.3%,8.0%). The majority of parents [e.g. 64.3%; CI 95%: (60.7%,67.9%)], had low knowledge about the use of CRS. The most important reasons for not using CRS was lack of laws and policies [e.g. 59.7%; CI 95%:(12.5%,18.0%)], lack of knowledge [e.g.59.6%; CI 95%:(57.9%, 63.3%)] and the high cost of CRS [e.g. 57.6%; CI 95%:(53.81%,61.2%)]. The most important predictors of not using CRS were the child's age, parental knowledge, and the socioeconomic status of the household (p < 0.05). Conclusions Most children did not have CRS. The parents with higher education and those with higher socioeconomic status had higher rate of CRS use. Based on the low rate of CRS use and poor parental knowledge about it, education of parents toward boosters use and benefits of using CRS, enforcing mandatory laws and ploicies for CRS use in Iran, and allocation of government subsidies to low-income families for purchasing CRS are suggeted as essential strategies to increase CRS use
    corecore