5,680 research outputs found

    Sensory-based motion planning with global proofs

    Full text link

    A New Reconfigurable Agricultural Vehicle Controlled by a User Graphical Interface: Mechanical and Electronic Aspects

    Get PDF
    The use of innovative mobile vehicles with increasingly advanced mechatronic aspects in the agricultural sector is becoming, in recent years, a stimulating field of research and comparison. In particular, the problem addressed in the present work refers to improving the locomotion of mobile vehicles on agricultural terrain by reducing the soil damage and improve the overall performance. Agricultural vehicles generally use tracks and wheels for locomotion; the main difference between the two systems is the contact area with the ground and, consequently, the pressure distribution. The present work presents a new reconfigurable agricultural vehicle that can switch from one locomotion system to another, choosing the suitable configuration according to the terrain conditions. All the mechanical and electronic aspects of the prototype developed are analyzed together with an in-depth analysis of the management of the innovative functions through a user-friendly graphical interface able to control the vehicle

    Supersymmetry Reach of Tevatron Upgrades: The Large tan⁥ÎČ\tan\beta Case

    Full text link
    The Yukawa couplings of the tau lepton and the bottom quark become comparable to, or even exceed, electroweak gauge couplings for large values of the SUSY parameter tan⁥ÎČ\tan\beta. As a result, the lightest tau slepton \ttau_1 and bottom squark \tb_1 can be significantly lighter than corresponding sleptons and squarks of the first two generations. Gluino, chargino and neutralino decays to third generation particles are significantly enhanced when tan⁥ÎČ\tan\beta is large. This affects projections for collider experiment reach for supersymmetric particles. In this paper, we evaluate the reach of the Fermilab Tevatron ppˉp\bar p collider for supersymmetric signals in the framework of the mSUGRA model. We find that the reach via signatures with multiple isolated leptons (ee and ÎŒ\mu) is considerably reduced. For very large tan⁥ÎČ\tan\beta, the greatest reach is attained in the multi-jet+\eslt signature. Some significant extra regions may be probed by requiring the presence of an identified bb-jet in jets+\eslt events, or by requiring one of the identified leptons in clean trilepton events to actually be a hadronic 1 or 3 charged prong tau. In an appendix, we present formulae for chargino, neutralino and gluino three body decays which are valid at large tan⁥ÎČ\tan\beta.Comment: 31 page Revtex file including 10 PS figure

    Trilepton Signature of Minimal Supergravity at the Upgraded Tevatron

    Full text link
    The prospects for detecting trilepton events (ℓ=e\ell = e or ÎŒ\mu) from chargino-neutralino (χ1±χ20\chi^\pm_1 \chi^0_2) associated production are investigated for the upgraded Fermilab Tevatron Collider in the context of the minimal supergravity model (mSUGRA). In some regions of parameter space, χ1±\chi^\pm_1 and χ20\chi^0_2 decay dominantly into final states with τ\tau leptons and the contributions from τ−\tau-leptonic decays enhance the trilepton signal substantially when soft cuts on lepton transverse momenta are used. Additional sources of the mSUGRA trilepton signal and dominant irreducible backgrounds are discussed. The dilepton (ℓ+ℓ−\ell^+\ell^-) invariant mass distribution near the endpoint is considered as a test of mSUGRA mass relations. Discovery contours for ppˉ→3ℓ+Xp\bar{p} \to 3\ell +X at 2 TeV with an integrated luminosity of 2 fb−1^{-1} to 30 fb−1^{-1} are presented in the mSUGRA parameter space of (m0,m1/2)(m_0,m_{1/2}) for several choices of tan⁥ÎČ\tan\beta.Comment: Version to appear in Physical Review

    Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    Get PDF
    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848

    Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment

    Get PDF
    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector

    Charged particle detection performance of Gas Electron Multiplier (GEM) detectors for the upgrade of CMS endcap muon system at the CERN LHC

    Get PDF
    The Compact Muon Solenoid (CMS) detector is one of the two general-purpose detectors at the CERN LHC. LHC will provide exceptional high instantaneous and integrated luminosity after second long shutdown. The forward region |η| ≄ 1:5 of CMS detector will face extremely high particle rates in tens of kHz/cm2 and hence it will affect the momentum resolution, efficiency and longevity of the muon detectors. Here, η is pseudorapidity defined as η = -ln(tan(Ξ/2)), where Ξ is the polar angle measured from z-axis. To overcome these issues the CMSGEM collaboration has proposed to install new large size rate capable Triple Gas Electron Multiplier (GEM) detectors in the forward region of CMS muon system. The first set of Triple GEM detectors will be installed in the GE1/1 region (1:6 <; |η| <; 2.2) of the muon endcap during the long shutdown 2 (LS2) of the LHC. Towards this goal, full size CMS Triple GEM detectors have been fabricated and tested at the CERN SPS, H2 and H4 test beam facility. The GEM detectors were operated with two gas mixtures: Ar/CO2 (70/30) and Ar/CO2/CF4 (45/15/40). In 2014, good quality data was collected during test beam campaigns. In this paper, the performance of the detectors is summarized based on their tracking efficiency and time resolution

    Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System

    Full text link
    Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5<∣η∣<2.21.5 < \mid\eta\mid < 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 ÎŒ\murad pitch arranged in eight η\eta-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO2_{2} 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 ÎŒ\murad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ±\pm 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 ±\pm 1.6 (stat)] ÎŒ\murad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by ∌\sim 10 ÎŒ\murad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ±\pm 2.5 stat] ÎŒ\murad is measured, consistent with the expected resolution of strip-pitch/12\sqrt{12} = 131.3 ÎŒ\murad. Other η\eta-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci. Symposium, Seattle, WA, reference adde

    Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector

    Get PDF
    In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown. © CERN 2016
    • 

    corecore