11 research outputs found

    Lake ecosystem robustness and resilience inferred from a climate-stressed protistan plankton network

    Get PDF
    Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October–April; May–September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium Planktothrix rubescens and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties

    Aquatic food webs in deep temperate lakes: Key species establish through their autecological versatility

    Get PDF
    Microbial planktonic communities are the basis of food webs in aquatic ecosystems since they contribute substantially to primary production and nutrient recycling. Network analyses of DNA metabarcoding data sets emerged as a powerful tool to untangle the complex ecological relationships among the key players in food webs. In this study, we evaluated co‐occurrence networks constructed from time‐series metabarcoding data sets (12 months, biweekly sampling) of protistan plankton communities in surface layers (epilimnion) and bottom waters (hypolimnion) of two temperate deep lakes, Lake Mondsee (Austria) and Lake Zurich (Switzerland). Lake Zurich plankton communities were less tightly connected, more fragmented and had a higher susceptibility to a species extinction scenario compared to Lake Mondsee communities. We interpret these results as a lower robustness of Lake Zurich protistan plankton to environmental stressors, especially stressors resulting from climate change. In all networks, the phylum Ciliophora contributed the highest number of nodes, among them several in key positions of the networks. Associations in ciliate‐specific subnetworks resembled autecological species‐specific traits that indicate adaptions to specific environmental conditions. We demonstrate the strength of co‐occurrence network analyses to deepen our understanding of plankton community dynamics in lakes and indicate biotic relationships, which resulted in new hypotheses that may guide future research in climate‐stressed ecosystems

    Widespread Occurrence of Two Planktonic Ciliate Species (<i>Urotricha</i>, Prostomatida) Originating from High Mountain Lakes

    No full text
    Ciliates of the genus Urotricha are widely distributed and occur in almost any freshwater body. Thus far, almost all species have been described from morphology only. Here, we applied an integrative approach on the morphology, molecular phylogeny and biogeography of two species isolated from high mountain lakes in the Central Alps, Austria. As these remote lakes are known to have water temperatures Urotricha species resembled morphological features of several congeners. An accurate species assignment was difficult due to several overlapping characteristics. However, we tentatively attributed the investigated species to Urotricha nais and Urotricha globosa. The biogeographic analyses revealed their occurrence in Europe, Africa and Asia, and no correlations to (cold) temperatures were found. Our findings suggest that these two urotrichs, originating from two cold and remote habitats, are probably cryptic species well adapted to their harsh environment

    An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea)

    Get PDF
    Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of different Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one-year cycle both from morphospecies counts and high-throughput sequencing (HTS), and, (v) proof of the co-occurrence of Coleps and their endosymbiotic algae from HTS-based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in different depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the different lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae). Our results suggest a future revision of the species concept of the genus Coleps

    Lake Ecosystem Robustness and Resilience Inferred from a Climate-Stressed Protistan Plankton Network

    No full text
    Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October–April; May–September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium Planktothrix rubescens and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties

    Molecular Data Reveal a Cryptic Diversity in the Genus Urotricha (Alveolata, Ciliophora, Prostomatida), a Key Player in Freshwater Lakes, With Remarks on Morphology, Food Preferences, and Distribution

    Full text link
    Species of the ciliate genus Urotricha are key players in freshwater plankton communities. In the pelagial of lakes, about 20 urotrich species occur throughout an annual cycle, some of which play a pivotal role in aquatic food webs. For example, during the phytoplankton spring bloom, they consume a remarkable proportion of the algal production. In ecological studies, urotrich ciliates are usually merely identified to genus rank and grouped into size classes. This is unsatisfying considering the distinct autecological properties of individual species and their specific spatial and temporal distribution patterns. As a basis for future research, we characterized in detail four common urotrich morphotypes, i.e., specimens identified as U. furcata and tentatively as U. agilis, U. pseudofurcata, and U. castalia, using state-of-the-art methods. We used an integrative polyphasic approach, in which morphological studies (in vivo observation, silver staining methods, scanning electron microscopy) were linked with a molecular approach exploiting four different gene fragments as taxonomic DNA barcodes with different resolution potential (SSU rDNA, ITS-1, ITS-2, hypervariable V4 and V9 regions of the SSU rDNA). We shed light on the diversity of urotrich ciliates as well as on their global distribution patterns, and annual cycles. Additionally, we coupled individual species occurrences and environmental parameters, and subsequently modeled the distribution and occurrence, using logistic regressions. Furthermore, for one strain putatively identified as U. castalia, we ascertained the optimal cultivation media and food preferences. Thereby, our comprehensive view on these important freshwater ciliates that frequently occur in environmental high throughput sequencing datasets worldwide will allow future studies to better exploit protistan plankton data from lakes

    Outcomes of a Geriatric Liaison Intervention to Prevent the Development of Postoperative Delirium in Frail Elderly Cancer Patients:Report on a Multicentre, Randomized, Controlled Trial

    Get PDF
    <p>Background: Delirium is a serious and common postoperative complication, especially in frail elderly patients. The aim of this study was to evaluate the effect of a geriatric liaison intervention in comparison with standard care on the incidence of postoperative delirium in frail elderly cancer patients treated with an elective surgical procedure for a solid tumour.</p><p>Methods: Patients over 65 years of age who were undergoing elective surgery for a solid tumour were recruited to a multicentre, prospective, randomized, controlled trial. The patients were randomized to standard treatment versus a geriatric liaison intervention. The intervention consisted of a preoperative geriatric consultation, an individual treatment plan targeted at risk factors for delirium, daily visits by a geriatric nurse during the hospital stay and advice on managing any problems encountered. The primary outcome was the incidence of postoperative delirium. The secondary outcome measures were the severity of delirium, length of hospital stay, complications, mortality, care dependency, quality of life, return to an independent preoperative living situation and additional care at home.</p><p>Results: In total, the data of 260 patients were analysed. Delirium occurred in 31 patients (11.9%), and there was no significant difference between the incidence of delirium in the intervention group and the usual-care group (9.4% vs. 14.3%, OR: 0.63, 95% CI: 0.29-1.35).</p><p>Conclusions: Within this study, a geriatric liaison intervention based on frailty for the prevention of postoperative delirium in frail elderly cancer patients undergoing elective surgery for a solid tumour has not proven to be effective.</p>

    Ciliates — Protists with complex morphologies and ambiguous early fossil record

    No full text
    Since ciliates rarely possess structures that easily fossilize, we are limited in our ability to use paleontological studies to reconstruct the early evolution of this large and ecologically important clade of protists. Tintinnids, a group of loricate (house-forming) planktonic ciliates, are the only group that has a significant fossil record. Putative tintinnid fossils from rocks older than Jurassic, however, possess few to no characters that can be found in extant ciliates; these fossils are best described as ‘incertae sedis eukaryotes’. Here, we review the Devonian fossil Nassacysta reticulata and propose that it is likewise another incertae sedis eukaryote due to the lack of any unambiguous ciliate characters. Future tintinnid fossil descriptions would be most helpful if: (i) neutral terminology is used in the descriptions but ciliate-specific terminology in the interpretations; (ii) the current ciliate classification is used, although fossil data may expand or modify classifications based on modern forms; (iii) close collaboration with specialists studying extant ciliates is done; and (iv) editors include an expert of extant ciliates in the review process
    corecore