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Abstract: Network analyses of biological communities allow for identifying potential consequences
of climate change on the resilience of ecosystems and their robustness to resist stressors. Using
DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan
plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change.
Despite several documentations of dramatic lake warming in Lake Zurich, our study provides
an unprecedented perspective by linking changes in biotic association patterns to climate stress.
Water temperature belonged to the strongest environmental parameters splitting the data into
two distinct seasonal networks (October–April; May–September). The expected ecological niche of
phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and
through parasitic fungi, was occupied by the cyanobacterium Planktothrix rubescens and mixotrophic
nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms
associated with key predators (ciliates), which contrasts traditional views of biological associations in
lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable
than the cold season network, indicating a time-lagged effect of warmer winter temperatures on
the communities. We conclude that climate stressors compromise lake ecosystem robustness and
resilience through species replacement, richness differences, and succession as indicated by key
network properties.

Keywords: protist plankton communities; lake ecosystem; co-occurrence networks; climate change

1. Introduction

Protists are essential for lake ecosystems because their roles as primary producers, de-
composers, or consumers contribute to biomass fluxes among different trophic levels [1,2].
Such interactions are essential components that define the function of an ecosystem. A
major challenge in revealing the complexity of these interactions is to account for the
temporal shift in protistan community structures. Species replacement, changes in species
richness differences, and succession in protistan communities are largely triggered by
natural changes of environmental conditions (such as seasonal changes) and stressors (such
as pollution or climate change stressors) [3–8]. Singular samplings of individual sites only
provide a snapshot of a specific moment in time of the protistan community under study,
and, therefore, do not allow to infer the complex interactions in these communities and
their reaction to habitat changes. Addressing such topics requires data collected in time-
series studies [9]. To date, the vast majority of time-series studies of protistan freshwater
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communities were dedicated to the analysis of alpha- and beta-diversity patterns [10,11]
but provided only a limited perspective on the consequences of environmental changes and
stressors on biotic associations within communities. Such associations and their persistence
under environmental changes, however, are a powerful indicator to assess the resilience
and robustness of an ecosystem affected by these changes [12]. Thereby, ecosystem ro-
bustness describes the resistance of a community to maintain its functioning during a
disturbance by stressors (that is, its buffering capacity during e.g., periods of warming),
while resilience describes the reorganization of a community back to a sTable State after
disturbance by stressors [13–15].

A statistical approach to infer potential biological associations from time-series data
are co-occurrence network analyses [12,16–22]. The basic prerequisite of co-occurrence
analyses is the following: two organisms which are ecologically associated are highly likely
to express their relation in significantly correlating abundance profiles [16]. Co-occurrence
networks are not capable to characterize the underlying reasons for specific associations
between individual species but efficient in inferring effects of natural and stressor-induced
changes on ecosystem function and robustness [12,23–27]. Towards this goal, several mea-
sures from graph theory can be considered. Centrality measurements or articulation points
of networks identify keystone species, i.e., species whose loss would cause severe effects
because they fulfill important functions in a community [28–30]. Of special importance
in this context are species involved in three-way-associations, because such patterns are
promising indicators for the structure and function of microbial ecosystems [16]. Modu-
larity evaluates how far a network is divided into densely interconnected groups [31–33].
High modularity indicates that a community comprises multiple functional guilds or multi-
ple ecological niches within which organisms are more frequently associated than between
the different functional guilds or ecological niches [33,34]. Average path length, average
degree, and density inform about the tightness of association patterns [35–37]. The higher
these measures the more associations between community members are established and,
consequently, the more (functional) redundancy exists. Robustness, measured via a loss of
connectivity, indicates a network’s response towards disturbances that would remove key
species from a community [38–41].

In marine [26,42,43] and soil environments [23,24,44], network analyses were suc-
cessfully exploited to analyze the resilience of microbial communities when subjected to
climate change stressors. Similar studies on protistan plankton are rare for freshwater
ecosystems in general, and lakes in specific. Our study aims at filling this void by analyz-
ing the protistan plankton co-occurrence network of a large freshwater lake, subjected to
climate change effects. Located in the northern part of the European Alps, Lake Zurich is a
model ecosystem for temperate European lakes [45]. Numerous studies documented the
impacts of global warming and anthropogenic stressors on Lake Zurich and the resulting
dramatic ecosystem changes including economic consequences [45–49]. A major effect on
protistan plankton communities triggered by lake warming in Lake Zurich is a decline
in phytoplankton diversity and biomass as a result of a changing mixing behavior of the
lake’s water layers that led to an interruption of nutrient cycling [45,46].

We inferred the protistan plankton co-occurrence network of the epilimnion in Lake
Zurich (hereafter referred to as the protistan plankton community network) from a three-
year time-series DNA metabarcoding dataset with biweekly sampling. Analyzing network
key properties, we addressed the following questions: (i) How are environmental parame-
ters, which are linked to climate change in Lake Zurich, involved in association patterns
within the protistan plankton communities? (ii) Do changes in phytoplankton diversity
lead to changes in association patterns within protistan plankton communities of Lake
Zurich that deviate from predictions of traditional models (such as the Plankton Ecol-
ogy Group Model, PEG [3,4])? (iii) How does lake warming affect the robustness and
resilience of protistan planktonic community associations, and, thus, ecosystem response
in Lake Zurich?
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2. Materials and Methods

2.1. Sampling Site Information and Measurement of Environmental Parameters

Plankton samples of Lake Zurich, Switzerland (47◦19.3′ N, 8◦33.9′ E) were collected
biweekly from the pelagic zone of the epilimnion in a depth of 5 m between March 2014
and February 2017, resulting in a dataset of 73 samples. All samples were processed as
previously described in Qu et al. [50]. Raw water samples had a volume of 5 L and were
split into 2 L sample duplicates, while the remaining sample was used for determining
biotic and abiotic environmental parameters. Each 2 L sample duplicate was pre-filtered
through a 150 µm net to remove larger zooplankton, then filtered onto a 0.65 µm membrane
filter (Durapore; Merck Millipore, Darmstadt, Germany) using a peristaltic pump. Filters
containing planktonic organisms in the targeted size range of 0.65–150 µm were immedi-
ately transferred into a cryovial containing 1.5 mL RNALater (Qiagen, Hilden, Germany),
placed in a refrigerator overnight, and stored at −80 ◦C until further processing.

Environmental parameters were measured for each sample (Table 1 and Table S1).
Water temperature (◦C), oxygen concentration (mg L−1), oxygen saturation (%), and con-
ductivity (µS cm−1) were measured in situ with a multiparameter probe (6600 V2; Yellow
Springs Instruments, Yellow Springs, OH, USA). Irradiance (i.e., photosynthetic active
radiation; µmol m−2 s−1) was measured with a spherical underwater quantum sensor
(LI-COR, Bad Homburg, Germany). Secchi depth (m) was determined with a Secchi disk.
Total in situ chlorophyll concentrations and in situ chlorophyll concentrations assigned to
specific phototrophic groups (diatoms and cryptophytes) were measured with a TS-16-12
fluoroprobe (bbe Moldaenke, Kronshagen, Germany). Additionally, the fluoroprobe was
calibrated for the quantification of the phycoerythrin-containing cyanobacterium Plank-
tothrix rubescens. For bacteria and coccoid cyanobacteria counts, 40 mL of each sample
were preserved with formaldehyde (2% final concentration), stained with SYBR-Green
I (Sigma-Aldrich, St. Louis, MO, USA), and evaluated via flow cytometry (Cytoflex S;
Beckman Coulter, Brea, CA, USA) [51]. Through manual gating of scatterplots, the total
bacterial abundance could be further differentiated into low nucleic acid bacteria and high
nucleic acid bacteria [52].

Table 1. Major limnological characteristics of Lake Zurich.

Parameter
Average

(Minimum–Maximum)
Unit

Water temperature 12.7 (4.7–23.7) ◦C

Air temperature 11.8 (−6.0–24.6) ◦C

Secchi depth (water transparency) 5.0 (2.4–11.2) m

Conductivity 266 (219–293) µS cm−1

Oxygen concentration 10.6 (8.7–13.3) mg O2 L−1

Oxygen saturation 100 (72–126) %

Orthophosphate * 1.6 (0.0–3.2) µg P L−1

Total phosphorus * 12.3 (7.0–25) µg P L−1

Particulate phosphorus * 8.5 (3.0–21) µg P L−1

Nitrate (NO3-N) * 434 (113–610) µg N L−1

Ammonium (NH4-N) * 6.0 (2.3–22.6) µg N L−1

Dissolved organic carbon (DOC) * 1.4 (1.1–1.7) mg C L−1

Total chlorophyll a 6.6 (0.5–32.1) µg Chl a L−1

Maximal depth 136 m

Total lake volume 3.3 km3

Total lake area 66.6 km2

Water retention time 1.2 years
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Physical and chemical parameters give the average, minimum, and maximum deter-
mined during the investigation period March 2014 to February 2017 for the sampling depth
in 5 m. Chemical parameters (marked with *) were determined every month (n = 36) by
Water Supply Zurich, physical parameters were determined on a biweekly basis (n = 72).

2.2. Sample Processing and High-Throughput Sequencing

Each filter was placed into a lysing matrix tube (Lysing Matrix E; MP Biomedicals,
Illkirch, France) into which 600 µL RLT buffer (Qiagen) and 6 µL β-Mercaptoethanol were
inserted. After a centrifugation step, the supernatant was discarded and the pellet was sus-
pended in 200 µL RLT buffer and 2 µL β-Mercaptoethanol. Subsequently, each matrix tube
was subjected to bead-beating for 45 s by 30 Hz (MM 200; Retsch, Haan, Germany). Total
DNA was extracted using the AllPrep DNA/RNA Mini Kit (Qiagen). From the extracted
DNA we amplified the hypervariable V9 region of the 18S rDNA following a standard pro-
tocol [53]. The protocol employed 1391F as a forward primer (5′-GTACACACCGCCCGTC-
3′; [54]) and EukB as a reverse primer (5′-TGATCCTTCTGCAGGTTCACCTAC-3′; [55]).
The PCR protocol consisted of an initial denaturation step at 98 ◦C for 30 s, followed by
30 cycles of 10 s at 98 ◦C, 20 s at 61 ◦C, 25 s at 72 ◦C, and a final five-minute extension at
72 ◦C. The reactions volumes amounted to 50 µL and included 0.5 µL Phusion polymerase
(New England Biolabs (NEB), Ipswich, MA, USA), 10 µL 5xPhusion GC buffer (NEB), 1 µL
10 mM dNTPs, 0.5 µL template DNA, 32.5 µL pure water, and 0.5 µL of each forward and
reverse primer. Triplicate PCR reactions were run for each DNA extract to minimize PCR
bias. Prior to purification (MinElute Kit; Qiagen), PCR sample replicates were pooled.

To prepare the resulting PCR products for high-throughput sequencing (HTS), se-
quencing libraries were constructed using the NEB Next Ultra DNA Library Prep Kit for
Illumina (NEB). Library quality was assessed with an Agilent Bioanalyzer 2100 system
(Agilent, Santa Clara, CA, USA). Illumina MiSeq sequencing was conducted by SeqIT
GmbH & Co. KG (Kaiserslautern, Germany). The sequence data files are deposited at
the Sequence Read Archive of the National Center for Biotechnology Information under
project number PRJNA609412.

2.3. Sequence Quality Control, Clustering, and Taxonomic Assignment

A multiple-step pipeline was employed for identifying high-quality sequences. First,
excessive primer overhangs were clipped using CUTADAPT version 1.18 [56]. Clipped
sequences were then quality-checked in QIIME version 1.8.0 [57] by selecting sequences
that had exactly matching barcodes and primers, contained exclusively unambiguous
nucleotides, and had a minimum length of 90 nucleotides. Finally, all sequences were de
novo chimera-checked using UCHIME version 5.2.236 [58]. Since efficient sequence cluster-
ing is extremely beneficial for subsequent network analyses [19], we applied a two-level
clustering approach to all high-quality HTS sequences [59]. This strategy diminished the
extent of placing highly similar sequences, arising from intra-individual or intra-species ge-
netic variation, into distinct operational taxonomic units (OTUs). Without this precaution,
false-positive signals are prone to inflate the number of nodes and edges in the networks,
as several OTUs representing the same species are highly likely to significantly co-occur
in time-series data. The first level of clustering was conducted in Swarm version 2.2.2
with d = 1 and the fastidious option -f [60]. For second-level clustering, the representa-
tive sequences of all swarms were extracted and pairwise aligned in VSEARCH version
2.11.0 [61]. The result of the pairwise sequence analysis was used to create sequence simi-
larity networks of the representative sequences at a threshold of 97% sequence similarity.
Network sequence clusters (NSCs) created by this second level of clustering represented
the units for all downstream analyses.

NSCs with a total abundance of fewer than three sequences were discarded. The
most abundant sequence of each remaining NSC (n = 37,848) was extracted and used
for taxonomic assignment in BLAST against NCBIs GenBank release version 226.0. For
placement of BLAST hits into higher taxonomic groups, we considered the BLAST hit
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with the highest sequence similarity and e-value and followed the classification system
in Adl et al. [62]. Only NSCs with a representative sequence that shared a fragment of
at least 90 consecutive nucleotides and a sequence similarity of at least 80% to any hit in
GenBank were retained. If the best hit in GenBank related to an unidentified environmental
reference sequence, we checked whether that reference sequence was also part of the
protist ribosomal reference (PR2) database version 4.11.0 [63] and adopted the taxonomic
affiliation. Although PR2 is a subset of GenBank, it is a curated database that contains
taxonomic affiliations for several entries which are merely listed as environmental reference
sequences in GenBank.

2.4. Compositional Variation Analyses

For revealing general seasonal succession patterns in the sampled data, two indepen-
dent non-metric multidimensional scaling (NMDS) analyses were performed in R version
3.5.1 [64] using the package “vegan” version 2.5.2 [65]. By default, NMDS calculations
in vegan include a two-level normalization step of data in the input matrix: first a Wis-
consin double standardization is performed, then a square root transformation. In the
first NMDS, samples were analyzed according to their community composition and in
the second NMDS (Figure S1), samples were analyzed according to their environmental
parameter profile (Table S1). Both NMDS analyses employed Bray–Curtis dissimilarity
scores between all pairs of samples. Because seasonality emerged as the major structuring
factor, we classified samples for subsequent network analyses into two groups. One “cold
season” dataset of 38 samples (October–April; with the exception of samples 04/01/15 and
10/12/16) and one “warm season” dataset of 35 samples (May–September).

2.5. Construction of Co-Occurrence Networks

Protistan plankton co-occurrence networks were calculated in NetworkNullHPC
version 0.3 (https://github.com/lentendu/NetworkNullHPC, accessed on 30 January
2021; [66]), a script specifically designed after the null model strategy for inferring sta-
tistically significant co-occurrences in metabarcoding datasets [16]. Data preparation in
NetworkNullHPC started by removing low-abundant NSCs which occurred in less than
10% of the samples from the OTU-to-sample read abundance matrix. The resulting data
matrix was log-ratio normalized, which is highly recommended for compositional data [67].
Following this recommendation, read abundances were log-transformed and then normal-
ized by the read abundances per sample, under consideration of the expected sequencing
depth. Null models were generated from the normalized read abundance matrix by adding
random low-level noise in 1000 permutations to obtain statistically significant thresholds
of Spearman’s rank correlation coefficient (rho). In addition, only nodes and edges which
were persistently detected in the majority of permutations were retained for creating a
consensus network (see [16] and [66] for detailed descriptions of the complete null model
strategy). This approach avoids arbitrary set thresholds for Spearman’s rho and instead
determines dataset-specific thresholds. In our study, the statistically determined Spear-
man’s rho threshold for co-occurrence was set to 0.6 in the cold season network and 0.62
in the warm season network, and −0.59 and −0.61 in co-exclusion networks, respectively.
Correlations between NSCs that exceeded the co-occurrence or co-exclusion threshold were
included in the resulting consensus network (one for the cold season, one for the warm
season) in which they formed the nodes (NSCs) and edges (significant correlations). We
further enabled NetworkNullHPC’s -e option to include environmental parameters in the
network correlation analyses. The networks were visualized in Gephi version 0.9.2 [68]
using the Yifan Hu layout.

2.6. Evaluation of Patterns within Co-Occurrence Networks

We relied on the R package “igraph” version 1.2.5 [69] to analyze several topological
metrics of the co-occurrence networks: average shortest path length, which is the mean
distance (in the number of edges) between two nodes; average degree, which is the mean
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number of edges per node; density, which is the number of realized edges amongst the
nodes in the network compared against the number of edges in a fully connected network
with the same number of nodes; diameter, which is the maximum shortest path distance
between two nodes in the network; modularity, which is the partitioning of the network
into groups of tightly associated nodes (i.e., modules); transitivity (or clustering coefficient),
which is the number of realized three-way associations compared against the maximal pos-
sible number of three-way associations in fully connected network with the same number
of nodes. As three-way associations are considered ecologically more meaningful than
two-way associations [16], we defined key species as nodes whose betweenness centrality
was significantly higher than those of all other nodes in the network and which were in
addition articulation points. Statistical significance was determined by bootstrapping the
betweenness centrality scores of all nodes in the R package “boot” version 1.3–25 [70]
to achieve normal distribution of the data. On the bootstrapped data, we applied 95%
confidence intervals to determine those betweenness scores which were significantly larger
than expected by chance.

Betweenness scores were also used in species extinction simulations to assess the
robustness of the networks. In a cascading attack scenario, key species were stepwise
removed from the network in decreasing order of their betweenness (and with recalculating
the betweenness after each removal), while the loss of connectivity in the network was
recorded. Intentional attacks are recommended for testing the robustness and resilience
especially of complex networks such as in environmental communities [38]. The method is
based on a hypothetical scenario to assess the large-scale response of a network as a whole
but does not take the likelihood of a specific species’ extinction into account or allows
inferences about this likelihood. The species extinction scenario was conducted with the
help of the R package “NetSwan” version 0.1 [71].

For taxon-specific subnetworks, we extracted all neighboring nodes with which a
specific focal node of interest was directly correlated in each seasonal network (using the
induced_subgraph command of “igraph”). Along with all nodes in the subnetwork, we
also extracted all correlations that the neighboring nodes shared with the focal node and
amongst each other.

3. Results

3.1. Seasonal Dynamics of Environmental Parameters

Throughout the three-year sampling campaign of our study, the environmental param-
eters in the epilimnion of Lake Zurich displayed re-occurring seasonal patterns (Figure 1,
Table S1). These patterns allowed for distinguishing one season characterized by cold water
temperature lasting from October to April, and one season characterized by warm wa-
ter temperatures lasting from May to September. Although irradiance by sunlight was
naturally higher in the warm season, chlorophyll concentrations and Secchi depths were
lowest, which is a clear indication that phytoplankton could not establish stable popula-
tions. Planktothrix rubescens-related phycoerythrin contributed only a small portion to the
total chlorophyll concentration, while heterotrophic bacteria and coccoid cyanobacteria
thrived during warm season conditions. By contrast, irradiance was low in the cold season,
but total chlorophyll concentrations more than doubled because of massive increases of
phycoerythrin-containing P. rubescens. These increases also led to less transparency of epil-
imnetic waters as documented by smaller Secchi depths. Unlike P. rubescens, heterotrophic
bacteria and coccoid cyanobacteria reached their respective minima in the cold season.
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Figure 1. Time-series data of environmental parameters. Seasonally fluctuating parameters were
measured throughout the three-year sampling campaign in the epilimnion of Lake Zurich. In all pan-
els, cold season months are colored in blue and warm-season months in red. Panel (A) shows water
temperature (blue line) and oxygen concentration (black line). Panel (B) shows irradiance (grey area)
and the Secchi depth (data points). Panel (C) shows chlorophyll concentration of all phytoplankton
(dark grey area) and the fraction of Planktothrix rubescens-related chlorophyll concentration among
the total chlorophyll concentration (light grey area). Panel (D) shows cell counts of all heterotrophic
bacteria (blue line) as well as of coccoid cyanobacteria (black line).

3.2. Co-Occurrence Network Properties

Two distinct seasonal groups emerged from non-metric multidimensional scaling
(NMDS) of the epilimnetic protistan plankton time-series metabarcoding data of Lake
Zurich (Figure 2). One group consisted of cold season communities sampled between
October to April. The other group consisted of warm-season communities sampled between
May and September. A third seasonal group, which comprised distinctive spring sample
communities could not be observed. According to this pattern, we split the complete
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metabarcoding dataset into one cold season dataset and one warm season dataset and
ran independent co-occurrence network analyses for each of the two seasons. The size
of the input datasets was similar for both seasons, with slightly more samples but fewer
network sequence clusters (NSCs; operational taxonomic units that resulted from two-level
sequence clustering) in the cold season dataset (Table 2). Likewise, the size of the resulting
networks was similar, however, with slightly more NSCs (nodes) but distinctively fewer
associations (edges) in the warm season. The threshold values for Spearman’s rho differed
only marginally between the cold season (−0.59 and 0.60) and the warm season dataset
(−0.61 and 0.62). Although some negative correlations were observed, none of them passed
the statistically determined thresholds for significant co-exclusions between NSCs. Thus,
all edges in the networks represent co-occurrences between NSCs. All other network
properties pointed towards a more complex network structure in the cold season plankton
community. Even though fewer nodes were found in the cold season network, they were
connected by notably more edges (6872 edges linking 946 nodes; Figure 3A) compared
to the warm season network (5252 edges linking 973 nodes; Figure 3B). This finding is
corroborated by a higher ratio of realized three-way associations (transitivity) and a higher
ratio of total realized associations (density) between protists in the cold season community.
In contrast, the lower complexity of the warm season network can be inferred from a longer
average path distance, lower average degree, and a larger diameter. All three observations
indicate a warm-season protistan plankton community in which associations between
community members were not as frequently observed and in which the network structure
was therefore not as tight as in the cold season community. Finally, of 68 connected
components in the warm season network, 61 consisted of only one pair of NSCs. This is
a further indication that the warm season community was more partitioned than its cold
season counterpart, which is expressed by a higher modularity of the former network.

 

− −

Figure 2. Non-metric multidimensional scaling of time-series data. The scaling is based on Bray–
Curtis dissimilarity values of metabarcoding community data between each pair of samples. Each
symbol represents a different month of sampling and each sample was classified into either cold
season (blue) or warm-season (red). With few exceptions, samples from October to April were
classified as cold season and samples from May to September as the warm season. The stress for the
scaling was 0.1826.
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Table 2. Key properties of the co-occurrence networks in both seasons.

Cold Season Network Warm Season Network

Input samples 38 35

Input NSCs 21,667 23,904

Spearman’s rho co-exclusion threshold −0.59 −0.61

Spearman’s rho co-occurrence threshold 0.6 0.62

Edges (co-occurrences) 6872 5252

Nodes (NSCs) 924 963

Nodes of environmental parameters 11 5

Average degree 14.53 10.79

Average path length 4.64 5.46

Connected components (larger than 3 nodes) 41 [6] 68 [7]

Density 0.015 0.011

Diameter 12 17

Modularity 0.02 0.03

Transitivity 0.49 0.43

NSC: network sequence cluster.

Figure 3. Seasonal protistan plankton co-occurrence networks. Panel (A) shows the cold season network, panel (B) the warm
season network. Each node represents one network sequence cluster (NSC). Two nodes are connected by an edge if they were
significantly co-occurring in the three-year time-series dataset of Lake Zurich. Node colors reflect the taxonomic assignment
of NSCs on higher taxonomic levels. Node sizes reflect the read abundance of NSCs in the metabarcoding dataset.

A targeted removal of nodes with the highest betweenness centrality from the cold
season network led to a gradual loss of connectivity at the beginning of a species extinction
scenario (up to 13% loss after removing 30 nodes, Figure 4). The buffering capacity of the
cold season community becomes compromised after the removal of the top 31 nodes with
the highest betweenness. When these nodes were removed, the loss of connectivity was 51%.
A total breakdown of the cold season community network (loss of 95% of the connectivity)
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was observed after the removal of the top 192 nodes with the highest betweenness values.
The warm season network was more vulnerable and less robust towards species extinction
(Figure 4). A first clear negative effect on the buffering capacity of the community was
observed after removing the top 17 nodes with the highest betweenness (loss of connectivity
reaching 17%). After the removal of the top 31 nodes with the highest betweenness
centrality, the loss of connectivity increased to 48%. The total breakdown of community
network structures in the warm season (loss of 95% of the connectivity), was already
achieved notably sooner compared to the cold season network, namely after the removal
of the top 162 nodes with the highest betweenness.

 

Figure 4. Robustness of the networks in both seasons towards a species extinction scenario. We
stepwise removed the nodes with the highest betweenness centrality from the network and recorded
the loss of connections (edges) in the network that was caused by this cascading attack. Displayed is
the removal of the 250 nodes with the highest betweenness centrality from each network, after which
the loss of connectivity was 98.67% in the cold season (blue) and 99.32% in the warm season (red). At
this point, the networks had almost completely disintegrated and the removal of more nodes had
only little effect.

3.3. Impact of Environmental Parameters on the Co-Occurrence Networks

The separation of the epilimnion time-series samples into one cold season and one
warm season dataset was further supported by the seasonal dynamics of environmental
parameters in Lake Zurich (Figure 1, Table S1). Eleven environmental parameters corre-
lated with NSCs in the cold season network (Figure 3A; ordered in decreasing number of
significant correlations to NSCs): bacterial abundance, water temperature, conductivity,
oxygen saturation, Secchi depth, coccoid cyanobacterial abundance, oxygen concentration,
Planktothrix rubescens-related chlorophyll concentration, total chlorophyll concentration,
irradiance, and bacteria with high nucleic acid content. In contrast, only five environ-
mental parameters correlated with NSCs in the warm season network (Figure 3B; ordered
in decreasing number of significant correlations to NSCs): water temperature, coccoid
cyanobacterial abundance, oxygen saturation, diatom-related chlorophyll concentration,
and conductivity. All parameters that appeared in both networks shared a higher number
of correlations with NSCs in the cold season than in the warm season (Table S2). This
observation from within network structures translates into the following biological result:
a larger fraction of protists is adapted to Lake Zurich’s environmental conditions in the
cold season water phase than to those in the warm season water phase.
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3.4. Taxonomic Composition of the Co-Occurrence Networks

Despite different network properties, the community composition within the networks
of both seasons was similar on higher taxonomic levels. The two most diverse taxon groups
in the cold season (Figure 5A) were Stramenopiles (319 NSCs) and Alveolata (256 NSCs).
Within the Stramenopiles, Chrysophyceae were represented with the highest number
of NSCs (n = 150), while diatoms (Bacillariophyta) played only a minor role (14 NSCs).
Ciliophora (120 NSCs) was the most diverse phylum within the Alveolata, closely followed
by Dinoflagellata (115 NSCs). Similarly, the two most diverse taxon groups in the warm
season (Figure 5B) were also Stramenopiles (341 NSCs) and Alveolata (237 NSCs). Within
the Stramenopiles, the Chrysophyceae were similarly diverse as in the cold season network
(155 NSCs). The diversity of diatoms, however, increased to 27 NSCs. Likewise, the
amount of alveolate NSCs remained similar compared to the cold season, with Ciliophora
reaching 109 NSCs and Dinoflagellata 108 NSCs. A notable increase of NSCs from cold to
warm-season was observed for Fungi (from 51 NSCs to 80 NSCs) and Chlorophyta (from
31 NSCs to 59 NSCs).

Figure 5. Community composition and key nodes of the co-occurrence networks in both seasons.
Taxonomic assignment to higher taxonomic levels follows Adl et al. [62]. Panel (A) displays the
community composition of the cold season network, panel (B) displays the community composition of
the warm season network. Panel (C) displays the taxonomic affiliation of key nodes in the cold season
network, panel (D) displays the taxonomic affiliation of key nodes in the warm season network.

A considerable number of 531 NSCs were shared between the two seasonal networks.
The NSCs that occurred simultaneously in both networks throughout the year belonged
mainly to Stramenopiles (205 NSCs), Alveolata (120 NSCs), Opisthokonta (67 NSCs; includ-
ing Fungi), Rhizaria (56 NSCs), and Cryptista (40 NSCs). Among these taxonomic groups,
most NSCs shared by both networks were further affiliated to Chrysophyceae (81 NSCs)
and Ciliophora (76 NSCs).
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3.5. Key Nodes of the Co-Occurrence Networks

Measures from graph theory allowed for defining 56 key nodes in the protistan
plankton community network of the cold season and 46 key nodes in the network of the
warm season (Figure 5C,D). The most abundant taxon groups among key nodes in the
cold season were Alveolata (22 NSCs, of which 13 belonged to ciliates) and Stramenopiles
(19 NSCs, of which 9 belonged to chrysophytes). Similarly, the most abundant taxon
groups among key nodes in the warm season were also Alveolata (16 key nodes, of
which 12 belonged to ciliates) and Stramenopiles (16 key nodes, of which 7 belonged to
chrysophytes). Five taxonomic key nodes were shared between the two seasonal networks,
which were Nannochloropsis limnetica (Stramenopiles), Cryptomonas curvata (Cryptista), and
three ciliates (Euplotidae, Halteria sp., Halteriidae). One further shared key node was an
environmental parameter (conductivity).

As an example, the two subnetworks of Halteria sp., one of the five shared taxonomic
key nodes in both networks, were further investigated. The biological associations of this key
node taxon were remarkably distinct in a comparison of both seasonal networks. In the cold
season, Halteria sp. was associated with 36 significantly correlating nodes (Figure 6A). Most
of these nodes were assigned to other ciliate species (e.g., Histiobalantium sp. or Askenasia sp.)
and Chrysophyceae (e.g., Dinobryon bavaricum, Dinobryon sociale, and Uroglena americanum)
commonly found in freshwater habitats. Furthermore, we found indications that Halteria sp.
is a species linking different trophic levels, since it was co-occurring with Mesocyclops sp.
(possibly Mesocyclops leuckarti, a frequent copepod in Lake Zurich) and correlating with
the abundance of coccoid cyanobacteria. In the warm season network, Halteria sp. was
associated with only eight significantly correlating partners, most of which were assigned
to the Stramenopiles genus Pedinella (Figure 6B). In the cold season, Halteria sp. was co-
occurring with Pedinella less frequently. The comparison of Halteria sp.’s subnetworks of
the cold and warm season showed that members of similar taxonomic groups co-occurred
with this ciliate key node, though the warm season subnetwork was conspicuously reduced
compared to its counterpart of the cold season.

Figure 6. Species-specific co-occurrence subnetworks of Halteria sp. in both seasons. One network sequence cluster
(NSC) assigned to the ciliate Halteria sp. was identified as a key node in the networks of both seasons. The Halteria sp. key
node is highlighted by a bold black circle. All directly neighboring nodes of this Halteria sp. node are displayed in the
subnetworks above. Panel (A) shows the subnetwork of the cold season, panel (B) the subnetwork of the warm season.
Node colors reflect the taxonomic assignment of NSCs on higher taxonomic levels. Node sizes reflect the read abundance of
NSCs in the metabarcoding dataset.
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4. Discussion

4.1. Placing Co-Occurrence Networks into Perspective

Although co-occurrence network analyses are limited to deriving potential species
association patterns exclusively from significant correlations in species (or ASV, OTU)
abundance matrices rather than from experimental observations, numerous studies have
shown that such associations can be correctly predicted. More importantly, they allow for
drawing valuable conclusions on community- or ecosystem-level [12,14,17–19,22–24,43].
The success and reliability of such studies, however, strongly depend on the quality of
the network analysis design. Therefore, we here used state-of-the-art knowledge and
methodologies to consider the critical points in co-occurrence network analyses [28,72,73].
To mention some examples: (i) the analyses of this study were based on abundance profiles
obtained from time-series metabarcoding instead of mere presence-absence data [72]. (ii)
Highly similar sequences placed in multiple OTUs were agglomerated by a second-level
clustering strategy. This diminished excessive false-positive co-occurrences of nodes and
edges that actually represented an intraspecific genetic variation of the same organism or
species [19,59]. (iii) The actual assessment of significant correlations employed a null model
approach [16], which was identified as a positive exception in critical reviews of ecological
network analyses [72,73]. Nevertheless, we point out that eventually, conclusions drawn
from network analyses require rigorous testing in specifically designed experimental
studies with e.g., cultivated species, or with targeted observations in natural systems.
Network analyses provide, thus, the hypothesis framework to build explanatory models
and fuel further research [19,73].

4.2. Succession in the Protistan Plankton Network of Lake Zurich Is Affected by Climate Change

Seasonal succession of microbial eukaryote communities is well documented and
has been studied in many lake ecosystems [7,11,74]. Our time-series metabarcoding ap-
proach confirms previously reported patterns of distinct protistan plankton communities
in the cold and warm season [3,4,75,76] and the absence of phytoplankton spring blooms
from the epilimnion in Lake Zurich [77]. These observed succession patterns are largely
the result of seasonally changing physicochemical parameters (Figure 1, Figure 4 and
Figure S1, Table S1) that have been drastically altered by global warming during the last
decades [45–49]. By inferring the protistan co-occurrence network of each season, we
revealed consequences for succession patterns of a model lake ecosystem subjected to
climate change. Previous studies [45,47] demonstrated that while environmental stress in
Lake Zurich often originates in autumn and winter (corroborating with the cold season
dataset of our study), the consequences for plankton communities are most severe in spring
and summer (corroborating with the warm season dataset of our study). Especially lake
water surface temperatures significantly increased in the wake of climate change [46]. This
process of lake warming is further accelerated by significantly increased air temperatures
in spring [46] and has led to drastic changes in the stratification regime that prevents
complete water turnovers in Lake Zurich. The strong impact of water temperature as
a major stressor in Lake Zurich can be derived from its position in both networks,
from which it emerged as the environmental parameter with most correlations
to protists (Table S2). Further time-lagged consequences caused by the effect of water
temperature on the lake ecosystem are evident in the networks from the roles of eukaryotic
phytoplankton organisms and of Planktothrix rubescens, a filamentous cyanobacterium able
to form massive blooms [78]. Thermocline-induced incomplete water turnovers resulted
in a nutrient depletion in the epilimnion of Lake Zurich during our investigation period
(2014–2017; see Table 1 and Yankova et al. [45]). Unlike most eukaryotic phytoplank-
ton organisms, P. rubescens is capable of living in phosphorus-poor environments and is,
therefore, the major profiteer of climate change in Lake Zurich [47]. In the warm season,
however, P. rubescens descends into the metalimnion (10–15 m depths) [78] and is not di-
rectly associated with protists in epilimnetic communities. According to this chain of cause
and effect, protistan phytoplankton does not find adequate environmental prerequisites to
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play major roles in the networks of both seasons (with little increase in the warm season
compared to the cold season; Figure 5), while several protists significantly correlated with
the opportunistic P. rubescens in the cold season, but none in the warm season (Table S2).

The identification of water temperature as a major determinant associated with numer-
ous protistan taxa especially in the cold season underlines its influence on co-occurrence
patterns among protists in the epilimnion. Also, the effects of other environmental pa-
rameters triggered by lake warming became obvious as they significantly correlated with
protistan co-occurrence patterns. These parameters include for example oxygen (both satu-
ration and concentration), which was linked to a different set of organisms in either season,
which suggests that this parameter is one of the most important environmental variables
associated with planktonic organisms in the epilimnion of Lake Zurich. Even though the
epilimnion in Lake Zurich was saturated with oxygen in the warm season, a simultaneous
decrease in conductivity indicated fewer solutes and nutrients in the epilimnion during
this time of the year. Consequently, fewer protists correlated with conductivity measures
in the warm than in the cold season, when more solutes were available.

Throughout the time of lake warming in Lake Zurich, phytoplankton communities
have not been able to recover or to adapt to the new environmental conditions, as evident
from the continuous non-initiation of spring blooms. Thus, the phytoplankton community
is neither able to resist the ecosystem disturbance induced by climate change nor to recover
to a sTable State during the three-year observation cycle of this study. This suggests that
both ecosystem robustness and resilience in Lake Zurich are compromised. Considering
that lake warming in Lake Zurich is unlikely to cease soon, it is not possible to project the
evolution of phytoplankton communities and the adaptation of the ecosystem to a steady
state. Previous reports showed that the phytoplankton spring bloom could at least partly
recover in cooler years because complete water turnover was restored in Lake Zurich [45].
But such occasions were not recorded in the three-year sampling campaign of our study.

4.3. Ecological Consequences for Different Protist Groups Inferred from Climate-Stressed Networks

The Plankton Ecology Group (PEG) model predicts two distinct peaks of protistan phy-
toplankton and zooplankton in spring and summer for eutrophic and mesotrophic lakes [4].
Protistan plankton succession in Lake Zurich had established such peaks for decades [77],
but recent environmental changes have resulted in a surplus re-oligotrophication of the
lake and an absence of characteristic epilimnetic spring bloom communities that used
to be formed by autotrophic cryptophytes and diatoms [45,47]. Instead of matching the
predictions of the PEG model for eutrophic and mesotrophic lakes, the succession patterns
of protistan plankton in Lake Zurich have thus started to follow the predictions for a typical
oligotrophic lake with a small or no abundance peak in spring and a second small peak in
late summer [4]. The community structure inferred from our network analyses confirmed
Lake Zurich’s transformation to an oligotrophic state, with the notable exception that the
diminished role of protistan phytoplankton did not meet the expectations of the PEG model
(Figure 5). This was most pronounced in the warm season network when many autotrophic
protists were associated with Chytridiomycota is known to parasitize algae [79,80]. The
stress-induced by climate change might make autotrophic organisms more susceptible to
parasitism [81], and the combination of abiotic and biotic stressors might cumulate in an
amplification of phytoplankton decline.

The climate-stress-induced decline of phytoplankton results in multiple consequences
for the protistan plankton community networks. Most of all for heterotrophic protists
such as ciliates, which are the main predators of protistan phytoplankton in oligotrophic
lakes [4]. With autotrophs largely missing from the protistan plankton network, ciliates
are forced to expand their prey spectrum towards other organisms. The co-occurrence
networks indicate that nanoflagellates might fill this vacancy as by far the most associ-
ations were observed between ciliates and chrysophytes. This finding contrasts results
from previous co-occurrence networks between ciliates and other planktonic organisms
in Lake Zurich when phytoplankton spring blooms are successfully established [82]. In
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these networks, associations between chrysophytes and ciliates had not outnumbered
associations between phytoplankton (especially diatoms) and ciliates. Indeed, ciliates feed
on chrysophytes [83,84] and many associations may indicate predator-prey relationships.
With the decline of autotrophic phytoplankton as their preferred food source, chrysophytes
might become the ciliates’ most important prey throughout the year in the protistan plank-
ton community network. However, not all associations in the networks between these two
groups necessarily reflect predator-prey relations. Especially in winter, some associations
may indicate an overlap in feeding strategies, because both ciliates and chrysophytes com-
prise effective bacterivores [85] and share the same food source (i.e., bacteria) with which
they are both co-occurring. Alternatively, the significant co-occurrences between ciliates
and chrysophytes could indicate a preference towards similar environmental conditions.

Moreover, ciliates emerged as the most important taxon group from the networks for
mediating processes that affected a majority of other organisms (see betweenness results in
Figure 5C,D). Thereby, the relation of ciliates to other organisms was either direct or indirect,
when ciliates connected two other nodes which were not directly connected themselves.
An example for such a three-way association can be found in the cold season subnetwork
of Halteria sp., which correlated with coccoid cyanobacteria and simultaneously with a
crustacean Mesocyclops species (Figure 6A). This result illustrates the potential role of ciliates
in linking energy fluxes between different trophic levels [1]. Results from a morphological
study characterized Halteria grandinella as a major bacterivore in freshwater food webs
which corroborates well with our identification of Halteria sp. as a key species in the
protistan plankton community network [85]. Likewise, ciliates of the genus Halteria are
known for their characteristic jumping behavior that is a strategy to escape zooplankton
predators such as rotifers or copepods to which Mesocyclops belongs [86–88]. The example
of Halteria sp. illustrates how autecological knowledge of species corroborates findings of
co-occurrence network analyses. In this particular case, we, based on ecological knowledge
of this species, find a confirmation of the statistically derived associations in the network
(Halteria sp. as a keystone species functioning as an important trophic link).

Apart from affecting ciliate feeding behavior, phytoplankton decline in the networks
also enhanced the role of mixotrophic chrysophyte taxa, such as Dinobryon and Ochromonas,
which can perform photosynthesis in addition to feeding on bacteria [89,90]. This versatile
lifestyle gives them an advantage over obligate autotrophic protists in Lake Zurich that are
depending on favorable light conditions and the availability of nutrients. In the cold season,
mixotrophs can meet their energy demand by using bacteria as a primary energy source.
In the warm season, the energy demand of mixotrophs can be covered by performing
photosynthesis even under nutrient shortage. Mixotrophic chrysophytes might continue
to feed on bacteria at low rates in the warm season to ensure that their energy demand is
covered. However, statistically significant correlations between mixotrophic chrysophytes
and bacteria were only observed in the cold season and not in the warm season network.
Therefore, this scenario needs further testing in lab experiments.

4.4. Assessing Ecosystem Resilience of Lake Zurich with Protistan Community Networks

Our results showed that biotic and abiotic associations within protistan plankton
communities in Lake Zurich are more complex and more robust towards disturbances in
the cold compared to the warm season (Table 2, Figures 3 and 4). Thereby, the climate-
change-induced stress in Lake Zurich can be categorized as a press disturbance [15], since
it has been continuously affecting the ecosystem for years (and will continue to do so). A
study of vertebrate communities in terrestrial ecosystems illustrated how network analyses
of complex co-occurrence patterns among species can assess the impact of climate change
on ecosystems [27]. Based on their results, the authors developed a framework in which
robustness and connectivity emerged as indicative network metrics for the susceptibility
of an ecological community to climate change. Studies on bacteria [23,24,26,37], marine
communities [42,43], and benthic macroinvertebrates [91] have successfully applied similar
strategies for inferring the effect of environmental stressors from network analyses of
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community data. Different indicator measures exist for assessing the complexity of a co-
occurrence network based on metabarcoding data [12]. Our results (Table 2) demonstrate
that a larger input dataset does not necessarily lead to a network that comprises more
nodes (here protists) and edges (here co-occurrences). Neither does a count of nodes or
edges alone allow for concluding the complexity of a network. Such conclusions need to be
drawn from the network topology, by putting the numbers of nodes and edges into context
and inferring their distribution and connection patterns within the network. The density of
a network is one such metric and displays how many of the potential edges (with regard
to the total number of nodes) are effectively established. The higher the density, the more
associations in the network, and the more complex and resilient to stressors the community
network become [92,93]. Average path length, average degree, and diameter are indirectly
linked to density and also evaluate the distribution of edges in a network. With more
associations established among the same number of organisms in a network, mean path
distance and diameter decrease, and the complexity of the network increases. Another
indicator measure for the complexity of a network is modularity. If this measure is high,
the network is partitioned into many groups in which protists are co-occurring with each
other but less with nodes from other groups (similar to functional guilds) and the network
complexity decreases. Although modularity was just marginally higher in the warm season
protistan plankton community network of Lake Zurich, the lower level of complexity in
the warm season can further be derived from the partitioning of its co-occurrence network
into many more connected components (most of which consisting of only two nodes) than
in the cold season co-occurrence network.

Since functional redundancy correlates with ecosystem resilience [94], we referred to
network transitivity as an indicator measure for inferring functional redundancy in the
protistan plankton community networks. This metric indicates redundant associations,
by measuring the probability that two nodes are at the same time, directly and indirectly,
connected [12]. The higher this probability, the more redundant are associations in the
network and the more complex and robust towards the extinction of species becomes the
protistan community. Finally, we also assessed ecosystem resilience by documenting the
response of the network towards targeted attacks (Figure 4). The longer a community
network can maintain its structure and buffer the loss of connectivity, the more robust
and less vulnerable it is. Thereby, functional redundancy has a positive effect on network
robustness, because of its buffering capacity on node removal from the network.

Ongoing climate change can accelerate the loss of ecosystem resilience by promoting
changes in protistan plankton community networks. However, it is currently difficult to
predict whether the changes will continue towards a collapse of the networks or whether
they lead to another sTable State with permanent changes in ecosystem function and
services. The latter assumption finds support in reports about declining fish stocks and
increased costs for drinking water purification [95,96]. Beyond large-scale consequences for
ecosystems, co-occurrence networks obtained from large metabarcoding datasets proved
beneficial for developing hypotheses about autecological species-specific relationships.
Based on these hypotheses, future interdisciplinary approaches can be designed where
limnology, ecology, and molecular as well as morphological taxonomic expertise are con-
sidered to elucidate specific key players and their function in aquatic microbial food webs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-260
7/9/3/549/s1, Table S1: Time-series data of environmental parameters, Table S2: Network properties
of environmental parameter nodes in both seasons, Figure S1: NMDS of environmental parameter
time-series data.
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