40 research outputs found

    Hip Strength and Core Endurance in Female Adolescent Runners With and Without Knee Pain

    Get PDF
    BACKGROUND AND PURPOSE: Patellofemoral pain syndrome (PFPS) is one of the most prevalent orthopedic conditions affecting young athletes today. Epidemiological studies have reported PFPS to be the most common injury seen in runners. Deficits in hip strength have been identified in runners with PFPS, but core endurance in relation to knee pain has not been well documented. The primary purpose of our study was to investigate differences in hip strength and core endurance between female, adolescent runners with PFPS and their age matched controls. The secondary purpose of our research was to examine any correlations between hip strength and core endurance in our participants. METHODS: A cross sectional design was used. We recorded pain, Kujala score, hip strength and endurance and core endurance in 34 adolescent female cross country runners. Cases with PFPS were defined as young female runners with a minimum three month history of anterior knee pain of insidious onset and had a most severe knee pain rated 3/10 or higher. Control subjects had no history of knee surgery, traumatic knee injuries, patellar instability, or neurologic conditions. Between-group differences and correlations were calculated between age-matched cases and controls using t-tests. Pearson correlation coefficients were used to determine associations for selected measures. RESULTS: No significant differences were observed between cases and controls for hip strength and endurance. However, there was a large percent difference between cases and controls in selected core endurance measures. It was found that all hip strength and core endurance results had low correlations ( \u3c 0.28). Among cases with PFPS, a strong and significant, negative correlation was found between subjects’ reported worst pain and Kujala score (r=-0.79, p\u3c0.05)). A non-significant moderate negative correlation between side plank endurance and usual pain was found (r=-0.49). CONCLUSION: There were minimal differences noted in isometric strength tests between groups. There was a clear difference noted with endurance testing between groups. However, this difference was not found to be significant, which could be due to low number of subjects with PFPS. The differences in endurance between athletes with PFPS and their pain free counterparts merit further investigation and research. Of note, it was found that strength and endurance had a minimal correlation; this indicates that clinically, endurance cannot be inferred from isometric strength testing. Therefore, we recommend clinicians perform specific measures of endurance when attempting to identify impairments in runners with PFPS

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems: Best Practices for Data Collection in Cycle 2 and Beyond

    Full text link
    We present a set of recommended best practices for JWST data collection for members of the community focussed on the direct imaging and spectroscopy of exoplanetary systems. These findings and recommendations are based on the early analysis of the JWST Early Release Science Program 1386, "High-Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST." Our goal is for this information to be useful for observers in preparation of JWST proposals for Cycle 2 and beyond. In addition to compiling a set of best practices from our ERS program, in a few cases we also draw on the expertise gained within the instrument commissioning programs, as well as include a handful of data processing best practices. We anticipate that this document will be regularly updated and resubmitted to arXiv.org to ensure that we have distributed our knowledge of best-practices for data collection as widely and efficiently as possible.Comment: Not yet submitted for publication. Intended only to be a community resource for JWST Cycle 2 proposal

    JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b

    Full text link
    Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12 μ\rm{\mu}m. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 μ\rm{\mu}m, and detailed atmospheric modeling and retrievals identify this feature as SiO2_2(s) (quartz) clouds. The SiO2_2(s) clouds model is preferred at 3.5-4.2σ\sigma versus a cloud-free model and at 2.6σ\sigma versus a generic aerosol prescription. We find the SiO2_2(s) clouds are comprised of small 0.01{\sim}0.01 μ\rm{\mu}m particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H2_2O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Comment: 19 pages, 7 figures, accepted for publication in ApJ

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b

    Get PDF
    We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a <<20 MJup_\mathrm{Jup} widely separated (\sim8\arcsec, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799 c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color-magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256~b with \textit{JWST}'s NIRSpec IFU and MIRI MRS modes for coverage from 1 μ\mum to 20 μ\mum at resolutions of \sim1,000 - 3,700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the \textit{JWST} spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.Comment: Accepted ApJL Iterations of spectra reduced by the ERS team are hosted at this link: https://github.com/bemiles/JWST_VHS1256b_Reduction/tree/main/reduced_spectr

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned

    Full text link
    We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same dataset to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors, and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration, NIRISS AMI can reach contrast levels of 910\sim9-10 mag. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower mass exoplanets than ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal

    The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at 3.8μm\boldsymbol{3.8\,\rm{\mu m}}

    Full text link
    We present aperture masking interferometry (AMI) observations of the star HIP 65426 at 3.8μm3.8\,\rm{\mu m} as a part of the \textit{JWST} Direct Imaging Early Release Science (ERS) program obtained using the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument. This mode provides access to very small inner working angles (even separations slightly below the Michelson limit of 0.5λ/D{}0.5\lambda/D for an interferometer), which are inaccessible with the classical inner working angles of the \textit{JWST} coronagraphs. When combined with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the potential to probe a new portion of parameter space across a wide array of astronomical observations. Using this mode, we are able to achieve a contrast of ΔmF380M7.8\Delta m_{F380M}{\sim }7.8\,mag relative to the host star at a separation of {\sim}0.07\arcsec but detect no additional companions interior to the known companion HIP\,65426\,b. Our observations thus rule out companions more massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations 1020au{\sim}10{-}20\,\rm{au} from HIP\,65426, a region out of reach of ground or space-based coronagraphic imaging. These observations confirm that the AMI mode on \textit{JWST} is sensitive to planetary mass companions orbiting at the water frost line, even for more distant stars at \sim100\,pc. This result will allow the planning and successful execution of future observations to probe the inner regions of nearby stellar systems, opening essentially unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore