71 research outputs found

    Spitzer Secondary Eclipses of the Dense, Modestly-irradiated, Giant Exoplanet HAT-P-20b Using Pixel-Level Decorrelation

    Get PDF
    HAT-P-20b is a giant exoplanet that orbits a metal-rich star. The planet itself has a high total density, suggesting that it may also have a high metallicity in its atmosphere. We analyze two eclipses of the planet in each of the 3.6- and 4.5 micron bands of Warm Spitzer. These data exhibit intra-pixel detector sensitivity fluctuations that were resistant to traditional decorrelation methods. We have developed a simple, powerful, and radically different method to correct the intra-pixel effect for Warm Spitzer data, which we call pixel-level decorrelation (PLD). PLD corrects the intra-pixel effect very effectively, but without explicitly using - or even measuring - the fluctuations in the apparent position of the stellar image. We illustrate and validate PLD using synthetic and real data, and comparing the results to previous analyses. PLD can significantly reduce or eliminate red noise in Spitzer secondary eclipse photometry, even for eclipses that have proven to be intractable using other methods. Our successful PLD analysis of four HAT-P-20b eclipses shows a best-fit blackbody temperature of 1134 +/-29K, indicating inefficient longitudinal transfer of heat, but lacking evidence for strong molecular absorption. We find sufficient evidence for variability in the 4.5 micron band that the eclipses should be monitored at that wavelength by Spitzer, and this planet should be a high priority for JWST spectroscopy. All four eclipses occur about 35 minutes after orbital phase 0.5, indicating a slightly eccentric orbit. A joint fit of the eclipse and transit times with extant RV data yields e(cos{omega}) = 0.01352 (+0.00054, -0.00057), and establishes the small eccentricity of the orbit to high statistical confidence. Given the existence of a bound stellar companion, HAT-P-20b is another excellent candidate for orbital evolution via Kozai migration or other three-body mechanism.Comment: version published in ApJ, minor text and figure revision

    Spitzer Secondary Eclipse Observations of Five Cool Gas Giant Planets and Empirical Trends in Cool Planet Emission Spectra

    Get PDF
    In this work we present Spitzer 3.6 and 4.5 micron secondary eclipse observations of five new cool (<1200 K) transiting gas giant planets: HAT-P-19b, WASP-6b, WASP-10b, WASP-39b, and WASP-67b. We compare our measured eclipse depths to the predictions of a suite of atmosphere models and to eclipse depths for planets with previously published observations in order to constrain the temperature- and mass-dependent properties of gas giant planet atmospheres. We find that the dayside emission spectra of planets less massive than Jupiter require models with efficient circulation of energy to the night side and/or increased albedos, while those with masses greater than that of Jupiter are consistently best-matched by models with inefficient circulation and low albedos. At these relatively low temperatures we expect the atmospheric methane to CO ratio to vary as a function of metallicity, and we therefore use our observations of these planets to constrain their atmospheric metallicities. We find that the most massive planets have dayside emission spectra that are best-matched by solar metallicity atmosphere models, but we are not able to place strong constraints on metallicities of the smaller planets in our sample. Interestingly, we find that the ratio of the 3.6 and 4.5 micron brightness temperatures for these cool transiting planets is independent of planet temperature, and instead exhibits a tentative correlation with planet mass. If this trend can be confirmed, it would suggest that the shape of these planets' emission spectra depends primarily on their masses, consistent with the hypothesis that lower-mass planets are more likely to have metal-rich atmospheres.Comment: 16 pages, 14 figures, accepted for publication in Ap

    Constraints on Pluto’s H and CH₄ profiles from New Horizons Alice Lyα observations

    Get PDF
    The Alice spectrograph on New Horizons performed several far-ultraviolet (FUV) airglow observations during the July 2015 flyby of Pluto. One of these observations, named PColor2, was a short (226 s) scan across the dayside disk of Pluto from a range of ∼34,000 km, at about 40 minutes prior to closest approach. The brightest observed FUV airglow signal at Pluto is the Lyman alpha (Lyα) emission line of atomic hydrogen, which arises primarily through the resonant scattering of solar Lyα by H atoms in the upper atmosphere, with a brightness of about 30 Rayleighs. Pluto appears dark against the much brighter (∼100 Rayleigh) sky background; this sky background is likewise the result of resonantly scattered solar Lyα, in this case by H atoms in the interplanetary medium (IPM). Here we use an updated photochemical model and a resonance line radiative transfer model to perform detailed simulations of the Lyα emissions observed in the Alice PColor2 scan. The photochemical models show that H and CH₄ abundances in Pluto’s upper atmosphere are a very strong function of the near-surface mixing ratio of CH₄, and could provide a useful way to remotely monitor seasonal climate variations in Pluto’s lower atmosphere. The morphology of the PColor2 Lyα emissions provides constraints on the current abundance profiles of H atoms and CH₄ molecules in Pluto’s atmosphere, and indicate that the globally averaged near-surface mixing ratio of CH₄ is currently close to 0.4%. This new result thus provides independent confirmation of one of the primary results from the solar occultation, also observed with the New Horizons Alice ultraviolet spectrograph

    Constraints on Pluto’s H and CH₄ profiles from New Horizons Alice Lyα observations

    Get PDF
    The Alice spectrograph on New Horizons performed several far-ultraviolet (FUV) airglow observations during the July 2015 flyby of Pluto. One of these observations, named PColor2, was a short (226 s) scan across the dayside disk of Pluto from a range of ∼34,000 km, at about 40 minutes prior to closest approach. The brightest observed FUV airglow signal at Pluto is the Lyman alpha (Lyα) emission line of atomic hydrogen, which arises primarily through the resonant scattering of solar Lyα by H atoms in the upper atmosphere, with a brightness of about 30 Rayleighs. Pluto appears dark against the much brighter (∼100 Rayleigh) sky background; this sky background is likewise the result of resonantly scattered solar Lyα, in this case by H atoms in the interplanetary medium (IPM). Here we use an updated photochemical model and a resonance line radiative transfer model to perform detailed simulations of the Lyα emissions observed in the Alice PColor2 scan. The photochemical models show that H and CH₄ abundances in Pluto’s upper atmosphere are a very strong function of the near-surface mixing ratio of CH₄, and could provide a useful way to remotely monitor seasonal climate variations in Pluto’s lower atmosphere. The morphology of the PColor2 Lyα emissions provides constraints on the current abundance profiles of H atoms and CH₄ molecules in Pluto’s atmosphere, and indicate that the globally averaged near-surface mixing ratio of CH₄ is currently close to 0.4%. This new result thus provides independent confirmation of one of the primary results from the solar occultation, also observed with the New Horizons Alice ultraviolet spectrograph

    Investigating Trends in Atmospheric Compositions of Cool Gas Giant Planets Using Spitzer Secondary Eclipses

    Get PDF
    We present new 3.6 and 4.5 μm secondary eclipse measurements for five cool (T 1000 K) transiting gas giant planets: HAT-P-15b, HAT-P-17b, HAT-P-18b, HAT-P-26b, and WASP-69b. We detect eclipses in at least one bandpass for all planets except HAT-P-15b. We confirm and refine the orbital eccentricity of HAT-P-17b, which is also the only planet in our sample with a known outer companion. We compare our measured eclipse depths in these two bands, which are sensitive to the relative abundances of methane versus carbon monoxide and carbon dioxide, respectively, to predictions from 1D atmosphere models for each planet. For planets with hydrogen-dominated atmospheres and equilibrium temperatures cooler than ~1000 K, this ratio should vary as a function of both atmospheric metallicity and the carbon-to-oxygen ratio. For HAT-P-26b, our observations are in good agreement with the low atmospheric metallicity inferred from transmission spectroscopy. We find that all four of the planets with detected eclipses are best matched by models with relatively efficient circulation of energy to the nightside. We see no evidence for a solar-system-like correlation between planet mass and atmospheric metallicity, but instead identify a potential (1.9σ) correlation between the inferred CH₄/(CO + CO₂) ratio and stellar metallicity. Our ability to characterize this potential trend is limited by the relatively large uncertainties in the stellar metallicity values. Our observations provide a first look at the brightness of these planets at wavelengths accessible to the James Webb Space Telescope, which will be able to resolve individual CH₄, CO, and CO₂ bands and provide much stronger constraints on their atmospheric compositions

    A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds

    Get PDF
    With no analogues in the Solar System, the discovery of thousands of exoplanets with masses and radii intermediate between Earth and Neptune was one of the big surprises of exoplanet science. These super-Earths and sub-Neptunes probably represent the most common outcome of planet formation. Mass and radius measurements indicate a diversity in bulk composition much wider than for gas giants; however, direct spectroscopic detections of molecular absorption and constraints on the gas mixing ratios have largely remained limited to planets more massive than Neptune. Here we analyse a combined Hubble/Spitzer Space Telescope dataset of 12 transits and 20 eclipses of the sub-Neptune exoplanet GJ 3470 b, whose mass of 12.6 M⊕ places it near the halfway point between previously studied Neptune-like exoplanets (22–23 M⊕) and exoplanets known to have rocky densities (7 M⊕). Obtained over many years, our dataset provides a robust detection of water absorption (>5σ) and a thermal emission detection from the lowest irradiated planet to date. We reveal a low-metallicity, hydrogen-dominated atmosphere similar to that of a gas giant, but strongly depleted in methane gas. The low metallicity (O/H = 0.2–18.0) sets important constraints on the potential planet formation processes at low masses as well as the subsequent accretion of solids. The low methane abundance indicates that methane is destroyed much more efficiently than previously predicted, suggesting that the CH_4/CO transition curve has to be revisited for close-in planets. Finally, we also find a sharp drop in the cloud opacity at 2–3 µm, characteristic of Mie scattering, which enables narrow constraints on the cloud particle size and makes GJ 3470 b a key target for mid-infrared characterization with the James Webb Space Telescope

    Enhanced C2_2H2_2 absorption within Jupiter's southern auroral oval from Juno UVS observations

    Full text link
    Reflected sunlight observations from the Ultraviolet Spectrograph (UVS) on the Juno spacecraft were used to study the distribution of acetylene (C2_2H2_2) at Jupiter's south pole. We find that the shape of the C2_2H2_2 absorption feature varies significantly across the polar region, and this can be used to infer spatial variability in the C2_2H2_2 abundance. There is a localized region of enhanced C2_2H2_2 absorption which coincides with the location of Jupiter's southern polar aurora; the C2_2H2_2 abundance poleward of the auroral oval is a factor of 3 higher than adjacent quiescent, non-auroral longitudes. This builds on previous infrared studies which found enhanced C2_2H2_2 abundances within the northern auroral oval. This suggests that Jupiter's upper-atmosphere chemistry is being strongly influenced by the influx of charged auroral particles and demonstrates the necessity of developing ion-neutral photochemical models of Jupiter's polar regions.Comment: Accepted in JGR: Planet

    Possible Transient Luminous Events observed in Jupiter's upper atmosphere

    Full text link
    11 transient bright flashes were detected in Jupiter's atmosphere using the UVS instrument on the Juno spacecraft. These bright flashes are only observed in a single spin of the spacecraft and their brightness decays exponentially with time, with a duration of ~1.4 ms. The spectra are dominated by H2 Lyman band emission and based on the level of atmospheric absorption, we estimate a source altitude of 260 km above the 1-bar level. Based on these characteristics, we suggest that these are observations of Transient Luminous Events (TLEs) in Jupiter's upper atmosphere. In particular, we suggest that these are elves, sprites or sprite halos, three types of TLEs that occur in the Earth's upper atmosphere in response to tropospheric lightning strikes. This is supported by visible light imaging, which shows cloud features typical of lightning source regions at the locations of several of the bright flashes. TLEs have previously only been observed on Earth, although theoretical and experimental work has predicted that they should also be present on Jupiter.Comment: Accepted in JGR: Planets. 28 pages, 8 figure
    • …
    corecore